Fisica 1 per Informatici - Scritto 16/9/09 - Compito nr. 1

Soluzioni

- 1. $\vec{F}_3 = -(\vec{F}_1 + \vec{F}_2) = \{-1, -1, -2\} \text{ N}.$
 - Per quanto riguarda l'angolo, si usano i due modi di calcolare il prodotto scalare (dalle componenti e da moduli e angolo), ottenendo: $\cos\theta = (\vec{F}_1 \cdot \vec{F}_3)/(|\vec{F}_1| \cdot |\vec{F}_3|) = -0.546$, da cui $\theta = 2.14\,\mathrm{rad}$, o 123 gradi.
- 2. $d/v_1 d/v_2 = \Delta t$, da cui segue $d = \Delta t (v_1 \times v_2/(v_2 v_1))$. Con i dati del problema si ottiene d = 17553 m, ovvero circa 17.5 km.
- 3. Essendo $g = GM/R^2 = G\rho(4/3\pi R^3)/R^2 = 4/3\pi G\rho R$, se $R_p = 2R_t$ e $\rho_p = 1.2\rho_t$, allora $g_p = 2.4\,g_t$. Il periodo del pendolo vale quindi $T_p = 2\pi\sqrt{\frac{l}{2.4\,g_t}} = \frac{1}{\sqrt{2.4}}T_t = 0.645\,\mathrm{s}$. Per riottenere 1s bisogna allungare la lunghezza del pendolo di un fattore 2.4.
- 4. La variazione della quantità di moto è pari all'impulso della forza: $\Delta p = I_F = \int_{t_1}^{t_2} F(t) \, dt = \int_0^{\Delta t} F(t) \, dt = \alpha \, \Delta t + \beta \Delta t^2/2$. Con i dati del problema abbiamo $\Delta p = 28.5 \, \mathrm{kg} \, \mathrm{m/s}$.
- 5. Chiamando F_i la risultante delle forze su ciascun vagoncino, F_t la forza esterna applicata al primo vagoncino, a l'accelerazione del trenino (comune ai tre vagoncini) e T_{12} e T_{23} le tensioni fra i vagoncini, abbiamo le seguenti equazioni:

$$m a = F_1 = F_e - T_{12}$$

 $m a = F_2 = F_{12} - T_{23}$
 $m a = F_3 = T_{23}$.

Risolvendo, otteniamo: $a=F_e/3m$, $T_{12}=2/3$ F_e e $T_{23}=F_e/3$, ovvero, con i dati del problema, a=5 m/s, $T_{12}=10$ N e $T_{23}=5$ N.

6. La quantità di calore necessaria per la trasformazione è costituita da quattro contributi:

$$Q = m c_g \Delta T_1 + \lambda_f m + m c_a \Delta T_2 + 0.1 \lambda_e m,$$

il cui valore è pari a 244 kcal, ovvero 1.02 106 J, ossia 0.28 kwh.

- 7. Essendo la forza di attrito $-\beta v$, da "F=ma", otteniamo $-\beta v=m\,a=m\,\frac{dv}{dt}$, ovvero $\frac{dv}{dt}=-\frac{\beta}{m}v$, che ha soluzione $v(t)=v_0\,e^{-t/\tau}$, con $\tau=m/\beta$.

 Dal tempo di dimezzamento $t_{1/2}$ della velocità otteniamo quindi $\tau=t_{1/2}/\ln 2$, dal quale ricaviamo $\beta=m/\tau$. Infine la forza per mantenere l'auto a $18\,\mathrm{km/h}~(=5\,\mathrm{m/s})$ è pari, in modulo, alla forza di attrito a tale velocità, ovvero $\beta\,v_0/2$.

 Con i dati del problema: $\tau=100\,\mathrm{s},~\beta=10\,\mathrm{kg/s},~F=50\,\mathrm{N}$.
- 8. Ricordandosi che fra campo elettrico e potenziale c'è la stessa relazione che intercorre fra forza ed energia potenziale, troviamo $E = -dV(r)/dr = -V_0/r$, che per r = 2 cm vale -5000 V/m (diretto verso il filo). La forza sulla particella carica vale $Q \cdot E = -8 \times 10^{-7}$ N (tende ad attrarre la carica positiva verso il filo).

- 9. La resistenza equivalente vale nei due casi $12\,\Omega$ (serie) e $1.28\,\Omega$ (parallelo). Quindi l'intensità di corrente, la potenza e la durata della batteria valgono, nei due casi: $1\,\mathrm{A}$ e $9.4\,\mathrm{A}$; $12\,\mathrm{W}$ e $113\,\mathrm{W}$; $7\,\mathrm{h}$ e $45\,\mathrm{min}$.
- 10. Baricentro (o centro di massa) lungo x: $x_G = \sum_i m_i \, x_i / \sum_i m_i = 1/2 \, \mathrm{m}$ (ovvero a un quarto della lunghezza della barra, vicino alla massa maggiore). L'accelerazione angolare è data da M/I Essendo $I = \sum_i (x_i x_0)^2 \, m_i$, otteniamo nei tre casi: $I_G = 3 \, \mathrm{kg \, m^2}$, $I_A = 4 \, \mathrm{kg \, m^2}$ e $I_B = 12 \, \mathrm{kg \, m^2}$. Le accelerazioni angolari valgono quindi 4, 3 e 1 s⁻² (o rad/s ²).