FISICA I C.C.L. INFORMATICA

Raccolta di compiti di esame

E. Massaro, P. Rapagnani, L. Zanello

INFORMATICA

Fisica di base Compito scritto del 19/6/2002

 Un ciclista viaggia in salita con velocità v₁ per un tratto L e quindi in discesa con velocità v₂ per un tratto della stessa lunghezza L. Calcolare la velocità media del ciclista, in m/s.

Dati: $v_1 = 20 \text{ km/h}$; $v_2 = 40 \text{ km/h}$

Soluzione:
$$v_{\text{media}} = 2L/t$$
; $t = t_1 + t_2$; $t_1 = L/v_1$; $t_2 = L/v_2$;

$$t = L/v_1 + L/v_2 = L(v_1 + v_2)/(v_1 v_2); v_{media} = 2L/[L(v_1 + v_2)/(v_1 v_2)] =$$

= $(2 v_1 v_2)/(v_1 + v_2) = 26.6 \text{ km/h} = 7.4 \text{ m/s}$

2. Calcolare l'altezza che raggiunge un corpo lanciato verticalmente verso l'alto con una velocità iniziale **v**_i, considerando trascurabile la resistenza dell'aria.

Dati:
$$v_i = 8 \text{ m/s}$$
.

Soluzione:
$$(1/2)$$
 $v^2/g = h$, $h = 0.5 * 64/9.81 = 3.26$ m

3. Per mantenere un corpo in moto rettilineo uniforme su un piano orizzontale scabro, con coefficiente di attrito dinamico μ , occorre applicare una forza orizzontale **F**. Calcolare la massa del corpo.

Dati:
$$\mu = 0.25$$
; **F** = **3 N**

Soluzione:
$$\mu N = \mu mg = F$$
, $m = F/\mu g = 3/(0.25 * 9.81) = 1.22$ kg

4. Un corpo di massa $\mathbf{m_1}$ e con velocità $\mathbf{v_1}$ urta in modo completamente anelastico un corpo inizialmente fermo di massa $\mathbf{m_2}$. Calcolare l'energia dissipata nell'urto.

Dati:
$$m_1 = 3 \text{ kg}$$
; $m_2 = 5 \text{ kg}$; $v_1 = 4 \text{ m/s}$

Soluzione:
$$E_i = (1/2) m_1 v_1^2 = 24 J$$
; $E_f = (1/2) (m_1+m_2) v^2 =$
= $(1/2) (m_1+m_2) [(m_1/(m_1+m_2)) v_1]^2 = (1/2) (m_1^2/(m_1+m_2)) v_1^2 = 9 J$
 $E_i - E_f = 15 J$

5. Una molla di costante elastica **k** alla cui estremità libera è attaccata una massa **m**, viene compressa di una lunghezza Δ**x**. Calcolare la massima velocità che raggiunge la massa quando la molla è rilasciata.

Dati:
$$k = 150 \text{ N/m}$$
; $m = 0.25 \text{ kg}$; $\Delta x = 0.05 \text{ m}$

Soluzione:
$$(1/2) k (\Delta x)^2 = (1/2) m v_{max}^2$$
;

$$\mathbf{v}_{\text{max}} = (\mathbf{k/m})^{1/2} \Delta \mathbf{x} = (600)^{1/2} * 0.05 = 1.22 \text{ m/s}$$

6. Tre cariche elettriche uguali di valore **q** sono disposte ai vertici di un triangolo rettangolo isoscele avente ciascuno dei cateti lungo **r**. Calcolare il modulo della forza elettrica che agisce sulla carica opposta all'ipotenusa.

Dati:
$$q = 4 \cdot 10^{-6}$$
 C; $r = 0.1$ m

Soluzione: La forza è diretta lungo la bisettrice dell'angolo retto ed ha modulo:

$$F = (1/4 _o) (2)^{1/2} q^2/r^2 = 8.99 _0^9 1.414 (4 _0^6)^2/(0.1)^2 = 20.3 _0^8 1.414 (4 _0^6)^2/(0.1)^2 = 20.0 _0^8 1.414 (4 _0^6)^2/(0.1)^2 = 20.0 _0^8 1.414 (4 _0^6)^2/(0.1)^2 = 20.0 _0^8 1.414 (4$$

7. Calcolare il potenziale di un conduttore sferico di raggio **R** sulla cui superficie è distribuita una carica elettrica **Q**. (Si assuma il potenziale uguale a zero a distanza infinita).

Dati:
$$Q = 4 \cdot 10^{-8} \text{ C}$$
; $R = 0.01 \text{ m}$

Soluzione:
$$V = (1/4\pi\epsilon_0) Q/R = 8.99 10^9 (10^{-8})/(0.01) = 8.99 kV$$

8. Calcolare il campo magnetico al centro di due spire circolari concentriche; una di raggio **R**₁ percorsa da una corrente in verso orario di intensità **I**₁ e l'altra di raggio **R**₂ percorsa da una corrente in verso antiorario di intensità **I**₂.

9. Una spira indeformabile di forma circolare, di raggio $\mathbf{R_0}$, è immersa in un campo di induzione magnetica \mathbf{B} uniforme, diretto ortogonalmente al piano della spira. Il campo \mathbf{B} varia nel tempo secondo la funzione: $\mathbf{B} = \mathbf{a} \mathbf{t}$. Sapendo che la spira ha resistenza totale \mathbf{R} , calcolare la corrente \mathbf{I} che scorre nella spira.

Dati:
$$R_0 = 0.1 \text{ m}$$
; $a = 5 \text{ T/s}$; $R = 100 \text{ Ohm}$

Soluzione: I =
$$(1/R)*(d\Phi(B)/dt)$$
; $d\Phi(B)/dt = a\pi R_0^2$; I = $(a\pi R_0^2)/R = 5*3.14*0.01/100 = 1.57*10^{-3}$ A

10. Due raggi di luce viaggiano nel vuoto percorrendo un tratto della stessa lunghezza prima di giungere su uno schermo **p**. Nel suo percorso, uno dei raggi passa attraverso uno strato di diamante, di spessore **d** e indice di rifrazione **n**_d. Calcolare la differenza tra i tempi di arrivo sullo schermo **p**.

Dati:
$$d = 5 \text{ mm}$$
; $n_d = 2.42$

11. Un raggio di luce incide in \mathbf{O} su di una superficie riflettente. Su una parete verticale a distanza \mathbf{L} da \mathbf{O} è praticato un foro all'altezza \mathbf{h} . Quale deve essere l'angolo di incidenza θ perché il raggio riflesso passi per il foro?

Dati:
$$\mathbf{h} = \mathbf{L}/\sqrt{3}$$

12. Calcolare il rendimento di un ciclo di Carnot effettuato tra le temperature \mathbf{T}_1 e

Dati:
$$T_1 = 300 \text{ K}$$
; $T_2 = 480 \text{ K}$

Soluzione:
$$\eta = 1 - T_1/T_2 = 1 - 300/480 = 0.375$$

13. Due blocchi di uguale massa, uno di ferro a temperatura T_1 e uno di rame alla temperatura T_2 sono posti in contatto termico dentro un contenitore termicamente isolante, di capacità termica trascurabile. Calcolare la temperatura di equilibrio dei due blocchi metallici.

$$\begin{array}{l} {\rm Dati:\ T_1=320\ K;\ C_{Fe}=448\ J/(kg\ K);\ T_2=450\ K;\ C_{Cu}=387\ J/(kg\ K)} \\ {\rm Soluzione:\ T_{eq}=(C_{Fe}\ m\ T_1+C_{Cu}\ m\ T_2\)/(C_{Fe}\ m+C_{Cu}\ m)=} \\ =(C_{Fe}\ T_1+C_{Cu}\ T_2\)/\ (C_{Fe}+C_{Cu}\)=(448*320+387*450)/(448+387)=\\ =380\ K \end{array}$$

C. L. INFORMATICA Fisica di base I Compito scritto del 16/7/2002

1. Un corpo si trova all' istante \mathbf{t}_1 nella posizione individuata dal raggio vettore $\underline{\mathbf{r}}_1$ e all' istante successivo \mathbf{t}_2 si e' spostato nella posizione individuata dal raggio vettore $\underline{\mathbf{r}}_2$. Calcolare il modulo della sua velocità media.

Dati:
$$\underline{\mathbf{r}_1} = (20, 15, -5) \text{ m}; \ \underline{\mathbf{r}_2} = (40, 5, 0) \text{ m}; \ \mathbf{t}_1 = 4 \text{ s}; \ \mathbf{t}_2 = 22 \text{ s}$$

2. Calcolare in quanto tempo un corpo che si scivola su un piano inclinato di un angolo α con il piano orizzontale e privo di attrito, partendo da fermo da un' altezza \mathbf{h} raggiunge la base del piano.

Dati:
$$\alpha = 15^{\circ}$$
; $h = 0.60 \text{ m}$

3. Una pallina di gomma di massa m viene fatta cadere verticalmente e con velocità iniziale nulla da un' altezza h_1 . Dopo avere urtato il pavimento la pallina rimbalza fino all' altezza massima h_2 . Calcolare l' energia dissipata nell' urto. Si trascuri la resistenza dell' aria.

Dati:
$$h_1 = 2.0 \text{ m}$$
; $h_2 = 1.6 \text{ m}$; $m = 0.20 \text{ kg}$

4. Un corpo di massa m si muove di moto circolare uniforme lungo una circonferenza di raggio R soggetto ad una forza centripeta F_c . Calcolare il periodo del moto.

Dati:
$$m = 1.5 \text{ kg}$$
; $R = 0.5 \text{ m}$; $F_c = 30 \text{ N}$

5. Una molla di massa trascurabile e costante elastica \mathbf{k} , collocata su un piano orizzontale e fissata ad un estremità, viene colpita all' estremità libera da una massa \mathbf{m} con velocità \mathbf{v} nella direzione della molla. Sapendo che la massa resta attaccata alla molla, calcolarne la massima compressione.

Dati:
$$k = 200 \text{ N/m}$$
; $m = 0.50 \text{ kg}$; $v = 4.0 \text{ m/s}$

6. Calcolare la differenza di potenziale tra due distribuzioni piane indefinite e parallele di carica elettrica con densità superficiale σ_1 e σ_2 e separate una distanza D.

Dati:
$$\sigma_1 = 3 \cdot 10^{-8} \text{ C/m}^2$$
; $\sigma_2 = -5 \cdot 10^{-8} \text{ C/m}^2$; $D = 0.60 \text{ m}$

7. Calcolare densita' superficiale di carica elettrica su un conduttore sferico di raggio ${\bf R}$ sapendo il campo elettrico ${\bf E}$ ad una distanza dal centro pari ${\bf 10}~{\bf R}$.

Dati:
$$E(10R) = 10^3 \text{ V/m}$$

8. Tre conduttori rettilinei paralleli di uguale lunghezza L, si trovano sullo stesso piano separati da una distanza D. Essi sono percorsi da correnti elettriche di verso concorde e intensità I₁, I₂ e I₃. Facendo l' approssimazione che i campi magnetici siano uguali a quelli prodotti da conduttori rettilinei infiniti, si calcoli la forza totale che si esercita sul terzo conduttore.

Dati:
$$L = 5.0 \text{ m}$$
; $D = 0.1 \text{ m}$; $I_1 = 30 \text{ A}$; $I_2 = 50 \text{ A}$; $I_3 = 10 \text{ A}$.

9. Una spira indeformabile di forma quadrata, di lato L, è immersa in un campo di induzione magnetica B uniforme, diretto in modo da formare un angolo di 60° con la normale al piano della spira. Il campo B varia nel tempo secondo la funzione: $B = B_0 + a$ t. Sapendo che ciascun lato della spira ha resistenza totale R, calcolare la corrente I che scorre nella spira.

Dati: L = 0.3 m; a = 2 T/s; R = 10 Ohm

10. Calcolare l' angolo limite per un diamante immerso in acqua.

Dati: n(acqua) = 1.33; n(diamante) = 2.42

11. Calcolare la minima lunghezza che deve avere uno specchio sospeso verticalmente perche' una persona di altezza **h** possa vedere la sua immagine riflessa completa.

Dati: h = 1.80 m;

12. Un recipiente rigido chiuso contiene un gas perfetto alla temperatura T_1 e pressione P_1 . Il gas viene riscaldato fino alla temperatura T_2 e pressione P_2 . Conoscendo la differenza di pressione $\Delta P = P_2 - P_1$ calcolare la pressione iniziale P_1 del gas.

Dati: $T_1 = 300 \text{ K}$; $T_2 = 360 \text{ K}$; $\Delta P = 10 \text{ kPa}$

13. Calcolare la variazione di energia interna di un gas perfetto monoatomico quando esso compie una trasformazione isobara alla pressione P dal volume iniziale V_1 a quello finale V_2 .

Dati: $V_1 = 0.30 \text{ m}^3$; $V_2 = 0.80 \text{ m}^3$; P = 4000 Pa

Soluzioni degli Esercizi del compito del 16/7/2002

- 1. $\underline{\mathbf{r}_2} \underline{\mathbf{r}_1} = (20, -10, 5)$, $|\underline{\mathbf{r}_2} \underline{\mathbf{r}_1}| = (20^2 + 10^2 + 5^2)^{1/2} = 22.9$ m, $\langle v \rangle = |\underline{\mathbf{r}_2} \underline{\mathbf{r}_1}| / (t_2 t_1) = 1.27$ m/s
- $\begin{array}{l} 2.\;s = (1/2)\;a\;t^2,\;\;t = (2s/a)^{1/2}\;,\;\;s = h\;/\;\sin\alpha\;,\;\;a = g\;\sin\alpha\;,\;\;\;t = (2\;h\;/\;g)^{1/2}\;/\;\sin\alpha\;,\;\;t = (2\;x\;0.6\;/\;9.81)^{1/2}\;/\;\sin15^\circ = \;0.35\;/\;0.259 = \;1.35\;s \end{array}$
- 3. $\Delta E = mg (h_1 h_2) = 0.20 \times 9.81 \times 0.40 = 0.78 \text{ J}$
- 4. $F_c=m~\omega^2~R=(4\pi^2~m~R)~/~T^2$, $T=2~\pi~(mR/F_c)^{1/2}$, $T~=~2\pi~(1.5~x~0.5~/~30)^{~1/2}=0.99~s$
- 5. (1/2) $mv^2 = (1/2)$ k $(\Delta x)^2$, $\Delta x = v$ $(m/k)^2 = 4$ $(.5/200)^{1/2} = 0.20$ m.
- 6. $\Delta V = ED$, $|\underline{\mathbf{E}}| = (\sigma_1 \sigma_2)/2\epsilon_0 = (3 + 5) \cdot 10^{-8}/(2 \times 8.85 \cdot 10^{-12}) = 4.5 \cdot 10^3 \text{ V/m},$ $\Delta V = 4.5 \cdot 10^3 \cdot 0.60 = 2.71 \text{ kV}$
- 7. $E = (1/4\pi\epsilon_0)~Q/(10~R)^2 = ~(1/4\pi\epsilon_0)~(4\pi\sigma~R^2)/(10~R)^2~,~\sigma = 100~\epsilon_0~E$

$$\sigma = 100 \text{ x } 8.85 \ 10^{-12} \text{ x } 10^3 = 8.85 \ 10^{-7} \ \text{C/m}^2$$

$$8.F = \mid (\mu_{\rm o}/2\pi) \perp I_3(I_1/2D + I_2/D) \mid \ \, = \, \mid 2 \; 10^{-7} \; \text{x} \; 5 \; \text{x} \; 10 \; (30/0.20 \; + \; 50/0.10) \mid \ \, = \; 6.5 \; 10^{-3} \; N$$

9.
$$\Phi(B) = L^2 \, B \, \cos \, 60^\circ$$
, $\Delta \Phi(B) \, / \, \Delta t = L^2 \, a \, \cos \, 60^\circ$, $I = (1/4R) \, (\Delta \Phi(B)/\Delta t) = (1/4R) \, L^2 \, a \, \cos \, 60^\circ = (1/40) \, x \, 0.3^2 \, x \, 2 \, x \, \cos \, 60^\circ = 2.25 \, mA$

10.
$$\sin{(\theta_{lim})} = n(acqua) / n(diamante) = 1.33 / 2.42 = 0.5496$$
, $\theta_{lim} = arc \sin{(0.5496)} = 33^{\circ}.34$

- 11. La costruzione geometrica dell' immagine mostra che e' sufficiente uno specchio di lunghezza h/2 sospeso ad un' altezza d/2 sopra il livello degli occhi, quindi si avrà 0.90 m
- 12. Tr. Isocora: (ΔP) V = nR ΔT = nR $(T_2 T_1)$; P_1 V = nR T_1 ; $(\Delta P)/P_1 = (\Delta T)/T_1$; $P_1 = (\Delta P/\Delta T)$ $T_1 = (10000/60)$ 300 = 50 kPa
- 13. $\Delta U = nC_V \Delta T = n (3/2) R \Delta T$; $\Delta T = (P/nR) \Delta V$; $\Delta U = (3/2) P \Delta V = 1.5 \times 4000 \times 0.5 = 3000 J$

C. L. INFORMATICA Fisica I Compito scritto del 16/9/2002

1. Un punto descrive un moto uniforme in verso antiorario lungo una circonferenza di raggio \mathbf{R} con il centro nell' origine di un sistema di assi cartesiani Oxy. All' istante \mathbf{t}_1 il punto si trova nella posizione individuata dal raggio vettore \mathbf{r}_1 e all' istante successivo \mathbf{t}_2 si e' spostato nella posizione individuata dal raggio vettore \mathbf{r}_2 , non avendo ancora completato un giro. Calcolare la frequenza del moto circolare.

Dati: R=1.5 m;
$$\underline{\mathbf{r}}_1 = (1.5, 0)$$
 m; $\underline{\mathbf{r}}_2 = (0, -1.5)$ m; $\mathbf{t}_1 = 3$ s; $\mathbf{t}_2 = 18$ s

2. Un paracadutista nella fase finale di un lancio cade verso terra con moto rettilineo uniforme. Sapendo che la sua massa è \mathbf{m}_p e quella del suo equipaggiamento è \mathbf{m}_e , calcolare la forza di resistenza al moto prodotta dall' atmosfera.

Dati:
$$m_p = 75$$
. kg; $m_e = 20$. kg

3. Un corpo di massa \mathbf{m}_1 e velocità iniziale \mathbf{v}_1 ha un urto elastico con un corpo, inizialmente fermo, di massa \mathbf{m}_2 . Dopo l'urto il secondo corpo si muove con velocità \mathbf{v}_2 ' nella stessa direzione del moto del primo corpo, mentre questo torna indietro con velocità \mathbf{v}_1 '. Calcolare la massa del secondo corpo.

Dati:
$$m_1 = 1.0 \text{ kg}$$
; $v_1 = 6.0 \text{ m/s}$; $v_1' = -4.0 \text{ m/s}$; $v_2' = 2.0 \text{ m/s}$

4. Una forza costante \mathbf{F} di componenti cartesiane \mathbf{F}_x , \mathbf{F}_y , \mathbf{F}_z viene applicata ad un corpo che compie uno spostamento $\Delta \mathbf{s}$ nella direzione positiva dell' asse x. Calcolare il lavoro effettuato dalla forza.

Dati:
$$\Delta s = 2.0 \text{ m}$$
; $F = (3, 5, 2) \text{ N}$

5. Un corpo di massa \mathbf{m} viene lanciato lungo un piano orizzontale usando una molla di costante elastica \mathbf{k} , collocata sullo stesso piano orizzontale, fissata ad un' estremità e compressa di un tratto lungo $\Delta \mathbf{x}$. Sapendo fra il piano e il corpo esiste un coefficiente di attrito dinamico μ , calcolare lo spazio che percorre il corpo prima di fermarsi.

Dati:
$$k = 200 \text{ N/m}$$
; $m = 0.20 \text{ kg}$; $\Delta x = 0.10 \text{ m}$; $\mu = 0.25$

6. Due condensatori piani di capacità C_1 e C_2 sono collegati in parallelo con un generatore di d.d.p. (continua) pari a V. Si dimezza da distanza tra le armature del primo condensatore e si raddoppia quella tra le armature del secondo. Calcolare la variazione della carica elettrica totale nei due condensatori.

Dati:
$$C_1 = 10 \mu F$$
; $C_2 = 8 \mu F$; $V = 400 V$

7. Due resistori di resistenza \mathbf{R}_1 e \mathbf{R}_2 sono collegati in parallelo con un generatore di d.d.p. (continua). Conoscendo la potenza \mathbf{P}_1 dissipata dal primo resistore si calcoli la potenza totale dissipata da entrambi.

Dati:
$$\mathbf{R}_1 = 200 \ \Omega$$
; $\mathbf{R}_2 = 300 \ \Omega$; $\mathbf{P}_1 = 900 \ \mathbf{W}$

8. Schematizzando il tubo catodico di un televisore come un condensatore piano parallelo sottoposto a una differenza di potenziale ΔV e supponendo che un elettrone sia prodotto in quiete, calcolare la sua velocita' quando colpisce lo schermo.

Dati:
$$\Delta V = 20 \text{ KV}$$
; $m_e = 9.1 \text{ x } 10^{-31} \text{ g}$; $q_e = 1.6 \text{ x } 10^{-19} \text{ C}$

9. Una bacchetta di materiale conduttore di lunghezza \mathbf{L} si muove di moto rettilineo uniforme con velocità \mathbf{v} , perpendicolare alla bacchetta, in un campo di induzione magnetica \mathbf{B} uniforme, diretto in direzione perpendicolare al piano spazzato dalla bacchetta nel suo moto. Si calcoli la differenza di potenziale elettrico che si ha fra i due capi della bacchetta.

Dati:
$$v = 3 \text{ m/s}$$
; $L = 0.5 \text{ m}$

- 10. Un pesce si trova alla profondita' **L**. Qual'e' la sua profondita' apparente per un osservatore che si trova fuori dell'acqua, essendo \mathbf{n}_a l'indice di rifrazione dell'acqua? Dati: $\mathbf{L} = 1.5 \ \mathbf{m} \ ; \ \mathbf{n}_a = 1.33$.
- 11. Un raggio di luce incide nel punto O sulla superficie di una lastra a facce piane e parallele, la attraversa e si riflette sulla faccia inferiore, (vedi figura), riemergendo nel vuoto dal punto P. Calcolare l'indice di rifrazione del materiale della lastra, conoscendo la distanza \mathbf{OP} , lo spessore della lastra, \mathbf{L} , e l'angolo θ di incidenza del raggio entrante.

Dati:
$$L = 0.05 \text{ m}$$
; $\theta = 30^{\circ}$; $OP = 0.0365 \text{ m}$

12. In un ciclo di Carnot di rendimento η , la quantità di calore ceduta alla sorgente alla temperatura più bassa è Q_1 . Si calcoli il lavoro prodotto nel ciclo.

Dati:
$$\eta = 0.40$$
; $Q_1 = 330 \text{ J}$

13. Calcolare la quantità di calore che si deve fornire ad un gas perfetto monoatomico, mantenuto alla pressione constante ${\bf P}_{{\bf r}}$ per far aumentare il volume iniziale ${\bf V}_1$ del 40%.

Dati:
$$V_1 = 5.0 \ 10^{-3} \ m^3$$
; $P = 1.0 \ 10^4 \ Pa$

Fisica I Compito scritto del 30/9/2002

1. Calcolare il modulo del vettore V dato dal prodotto **vettoriale** dei vettori U e W.

Dati: $\underline{\mathbf{U}} = (2, 0, 0); \ \underline{\mathbf{W}} = (0, 0, 2);$

2. Un martello scivola senza attrito da un tetto inclinato di un angolo θ e lungo \mathbf{L} , cadendo poi nel vuoto per la distanza \mathbf{d} . Calcolare la componente verticale della velocità $\underline{\mathbf{v}}$ del martello quando arriva al suolo.

Dati: $\theta = 45^{\circ}$; L = 4 m; d = 10 m

3. Un corpo di massa \mathbf{m}_1 e velocità iniziale \mathbf{v}_1 ha un urto completamente anelastico con un corpo di massa \mathbf{m}_2 e velocità \mathbf{v}_2 avente la stessa direzione e verso del moto del primo corpo. Calcolare la velocita \mathbf{V} dei due corpi dopo l'urto.

Dati: $m_1 = 1.0 \text{ kg}$; $v_1 = 3.0 \text{ m/s}$; $v_2 = 1.0 \text{ m/s}$; $m_2 = 0.2 \text{ kg}$

4. Ad un certo istante, una forza costante di modulo ${\bf F}$ diretta orizzontalmente inizia ad agire su un corpo di massa ${\bf m}$ che inizia a muoversi su una superficie orizzontale con coefficiente di attrito dinamico μ_d . Sapendo che dopo il tempo Δt la velocità del corpo è ${\bf v}$, calcolare μ_d .

Dati: m = 0.5 kg; F = 2 N; $\Delta t = 3 \text{ s}$; v = 2 m/s

5. Un pendolo lungo \mathbf{l} e di massa \mathbf{m} , nel punto più basso raggiunto durante la sua oscillazione, ha velocità \mathbf{v}_o . Calcolare l'angolo massimo rispetto alla verticale a cui sale la massa del pendolo.

Dati: l = 2 m; m = 1 kg; $v_0 = 0.2 m/s$

6. Tre cariche uguali \mathbf{q} sono poste ai vertici di un triangolo equilatero di lato \mathbf{L} . Calcolare modulo, direzione e verso del campo elettrico \mathbf{E} prodotto da questa distribuzione di cariche nel punto di mezzo di uno qualunque dei lati del triangolo equilatero.

Dati: $q = 10^{-4} \text{ C}$; L = 0.1 m

7. Due condensatori C_1 e C_2 sono collegati in serie. Una carica Q viene depositata sulle armature di C_1 . Calcolare il valore della differenza di potenziale ΔV che compare ai capi di C_2 .

Dati: $Q = 3 \times 10^{-4} \text{ C}$; $C_1 = 10^{-7} \text{ F}$; $C_2 = 3 \times 10^{-7} \text{ F}$

8. Il parallelo di due resistenze uguali \mathbf{R} è a sua volta connesso in serie con una resistenza $\mathbf{R}_1 = 3\mathbf{R}$. Sapendo che il sistema è sottoposto alla d.d.p. DV, calcolare la potenza dissipata su \mathbf{R}_1 .

Dati: $\Delta V = 2 \text{ kV}$; $R = 100 \Omega$

9. Una bacchetta di materiale conduttore, di mass \mathbf{m} e lunghezza \mathbf{L} cade restando orizzontale in un campo di induzione magnetica \mathbf{B} uniforme, diretto perpendicolarmente al piano spazzato dalla bacchetta nel suo moto. Ad un certo

istante, si misura per la bacchetta una velocità **v**. Quale è l'accelerazione della bacchetta in quell'istante?

Dati:
$$v = 3 \text{ m/s}$$
; $L = 0.5 \text{ m}$; $m = 0.01 \text{ kg}$; $B = 0.1 \text{ T}$

10. Un raggio di luce di lunghezza d'onda λ viene diviso in due da un sistema di specchi. I due fasci attraversano quindi due strati di materiale di uguale spessore \mathbf{d} e differenti indici di rifrazione, \mathbf{n}_1 e \mathbf{n}_2 . Calcolare lo sfasamento delle due onde all'uscita dai due strati.

Dati:
$$\lambda = 0.5 \text{ x } 10-7 \text{ m}$$
; $d = 1.5 \text{ m}$; $n_1 = 1.33$; $n_2 = 1.1$

11. Un raggio laser incide su una lastra di vetro di spessore \mathbf{d} e indice di rifrazione \mathbf{n}_v , con un angolo θ rispetto alla normale alla lastra. A quale distanza dal punto di incidenza emerge il raggio uscente dalla lastra?

Dati:
$$d = 0.5 \text{ m}$$
; $\theta = 30^{\circ}$; $n_v = 1.3$

12. In un ciclo di Carnot di rendimento η , la sorgente calda ha temperatura T_2 . Si calcoli la temperatura T_1 della sorgente fredda.

Dati:
$$\eta = 0.40$$
; $T_2 = 600$ K.

13. Una mole di gas perfetto monoatomico compie una trasformazione adiabatica tra le temperature T_1 e T_2 . Calcolare il lavoro prodotto durante la trasformazione.

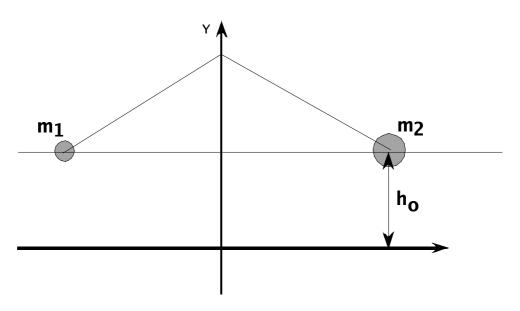
Dati:
$$T_1 = 450 \text{ K}$$
; $T_2 = 300 \text{ K}$; $R = 8.314 \text{ J/(mole K)}$

INFORMATICA Fisica I

Compito scritto del 13/2/2003

14. Tre forze F₁, F₂, F₃ di componenti:

$$F_1 = (4, 0, 0) \ N$$
; $F_2 = (0, 3, 0) \ N$; $F_3 = (2, 3, 0) \ N$ agiscono sullo stesso corpo. Calcolare il modulo della forza risultante.


Soluzione:
$$F_{tot} = F_1 + F_2 + F_3 = (6, 6, 0) N \Rightarrow |F_{tot}| = \sqrt{72} = 8,49 N$$

15. Un corpo con velocità iniziale $\mathbf{v_0} = 3,132$ m/s si muove su un piano orizzontale scabro. Percorre una distanza $\mathbf{x_1} = 0,6$ m in una prima parte del piano con coefficiente di attrito dinamico $\mu_1 = 0,2$. Successivamente si muove in un'altra parte del piano con coefficiente di attrito $\mu_2 = 0,1$.

Calcolare lo spazio **x**₂ che percorre nella seconda parte del piano fino all'istante in cui si ferma.

Soluzione: K = Ko - L1 = Ko - mg
$$\mu_1$$
 x₁ = mg μ_2 x₂
$$x_2 = (1/2 \text{ m v}_0^2 - \text{mg } \mu_1 \text{ x}_1) \text{ 1/ mg } \mu_2$$

$$x_2 = (1/2 \text{ v}_0^2/\text{g}\mu_2 - \text{x}_1\mu_1/\mu_2) = 0.75 \text{ m}$$

16. Due pendoli privi, di attrito, semplici di massa diverse $m_1 = 0.2$ kg e $m_2 = 0.3$ kg ed uguale lunghezza sono sospesi allo stesso perno. Essi vengono lasciati liberi da parti opposte, ma alla stessa altezza $h_0 = 0.8$ m in modo che si abbia una collisione nel punto più basso della traiettoria. Sapendo che, dopo la collisione perfettamente elastica, il primo pendolo risale all'altezza massima $h_1 = 1.568$ m, calcolare l'altezza a cui risale il secondo pendolo.

Soluzione: $m_1gh_0 + m_2gh_0 = m_1gh_1 + m_2gh_2$

$$h_0 = (m_1 + m_2) - m_1 h_1 = m_2 h_2$$

$$h_2 = h_o + (m_1/m_2) (h_o - h_1) = 0,288 m$$

17. Un corpo, inizialmente fermo, di massa $\mathbf{m} = \mathbf{0.8}$ kg, si muove lungo un binario orizzontale liscio soggetto ad una forza costante $\mathbf{F} = \mathbf{2}$ N che forma un angolo $\theta = \mathbf{45}^{\circ}$ col piano suddetto. Calcolare la potenza media prodotta dalla forza per spostare il corpo di $\mathbf{16}$ m.

Soluzione: $P = (F \cdot \Delta x)$

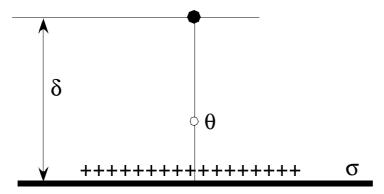
$$\Delta x = 1/2 \text{ a } (\Delta t)^2 \Rightarrow \Delta t = (2 \Delta x)/a$$

$$A = F \cos \theta / m \Rightarrow \Delta t = \sqrt{(2m \Delta x)/F \cos \theta}$$

$$P = \sqrt{((F^3 \cos^3 \theta \Delta x)/2m)} = 5,32 \text{ W}$$

18. Due corpi di uguale massa $\mathbf{m} = 1,2$ kg si muovono l'uno contro l'altro con la stessa velocità $\mathbf{v} = 6$ m/s. Quando collidono essi hanno un urto completamente anelastico. Calcolare l'energia dissipata nell'urto.

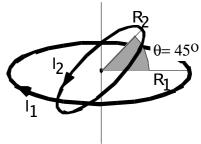
Soluzione: Prima dell'urto: Ktot = 2 (1/2 m v2)


Dopo l'urto: Ktot' = $0 \Rightarrow \Delta K = mv2 = 43,2 J$

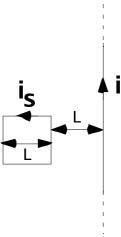
19. Al centro di un guscio sferico conduttore di raggi $R_1 = 10$ cm e $R_2 = 20$ cm, si trova una carica puntiforme $Q = 10^{-6}$ C. Calcolare il potenziale V a cui si porta il guscio sferico, assumendo che esso si annulli all'infinito.

Soluzione: $V = (1/4\pi\epsilon_0) Q/R_2 = 8.99 10^9 (10^{-6})/(0.2) = 44950 V$

20. Una carica $\mathbf{q} = -10^{-8}$ C è vincolata a muoversi lungo una guida perpendicolare ad una superficie piana indefinita e isolante, uniformemente carica con densità superficiale $\sigma = 10^{-5}$ C/m². A distanza $\mathbf{d} = 1$ m dalla


superficie, all'altro estremo della guida, è una carica $\mathbf{Q} = \mathbf{4} \cdot \mathbf{10}^{-6} \mathbf{C}$. Calcolare la distanza di equilibrio della carica \mathbf{q} dal piano.

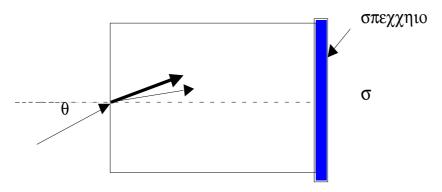
Soluzione: $\sigma/2\varepsilon_0 = (1/4\pi\varepsilon_0)$ Q/ $x^2 => x = \sqrt{(Q/2\pi\sigma)} = 0.25$ m => Dist. dal piano: d -x = 0.75 m


21. Calcolare il campo magnetico al centro di due spire circolari concentriche; una di raggio R₁ = 0.020 m percorsa da una corrente in verso orario di intensità I₁ = 40 A e l'altra di raggio R₂ = 0.050 m percorsa da una corrente in verso antiorario di intensità I₂= 60 A. Il piano delle due spire è inclinato di 45⁰ l'uno rispetto all'altro.

Dati: $R_1 = 0.020 \text{ m}$; $I_1 = 40 \text{ A}$; $R_2 = 0.050 \text{ m}$; $I_2 = 60 \text{ A}$.

Soluzione: B = $(\mu_0/2) \sqrt{[(I_1/R_1 - (1/\sqrt{2})(I_2/R_2))^2 + ((1/\sqrt{2})(I_2/R_2))^2}] = |2 \quad 10^{-7} (40/0.02 - 60/0.05)| = 503 \quad T$

22. Calcolare la forza Fm esercitata dal campo B prodotto da un filo indefinito percorso da una corrente i = 1.5 A, su una spira indeformabile quadrata con il lato L = 10 cm parallelo al filo e percorsa dalla corrente $i_S = 0.5$ A come in figura, quando la spira stessa si trova ad una distanza dal filo pari alla misura L del suo lato.


Soluzione:
$$F = \mu o$$
 is $i/2 = 10^{-7} 0.5 1.5 0.5 = 0.375*10^{-7} N$

- 23. Una lastra di ghiaccio galleggia sull'acqua.

 Se la luce incide sulla superficie superiore del ghiaccio a un angolo di 30°, qual'e' l'angolo di rifrazione nell'acqua?

 n(ghiaccio)=1.309; n(acqua) = 1.333.
- 24. Un blocco di vetro di sezione quadrata di lato s e lunghezza L viene illuminato al centro da un raggio di luce bianca incidente ad un angolo θ .All'estremita' del blocco e' posto uno specchio piano. Calcolare la distanza fra il raggio blu e quello rosso quando attraversano di nuovo il piano di entrata.

L = 100 cm;
$$n(blu) = 1.53$$
; $n(rosso) = 1.51$; $\theta = 10^{\circ}$

Soluzione: $\sin i/\sin r = n_r/n_i => \sin\theta_r = 1/n \sin \theta$.

$$= 2 L tg \theta_r$$

$$d(blu) = 22,85 cm$$

$$d(rosso) = 23,15 cm$$

$$d(blu) - d(rosso) = 0.3 cm$$

25. Un cubetto di Alluminio della massa di 0,1~kg e alla temperatura $T_1=80~^{0}C$ viene immerso in un litro di acqua distillata alla temperatura $T_2=10~^{0}C$. All'equilibrio si misura la temperatura $T_e=76.9~^{0}C$. Si calcoli il calore specifico dell'alluminio.

Soluzione:
$$c_1 m_1 (T_1 - T_e) = c_2 m_2 (T_e - T_2) => c_1 = c_2 (m_2/m_1) (T_e - T_2)/(T_1 - T_e) = 903 \text{ J/kg}^0 \text{C}$$

26. Un gas effettua una trasformazione reversibile descritta nel piano PV da un segmento rettilineo i cui estremi sono:

$$\begin{aligned} \mathbf{P_A} &= 3~\mathbf{10}^5~\mathbf{Pa}, \mathbf{V_A} = 4~\mathbf{10}^{-2}~\mathbf{m}^3\\ \mathbf{P_B} &= 10^5~\mathbf{Pa},~\mathbf{V_B} = 6~\mathbf{10}^{-2}~\mathbf{m}^3\\ \mathbf{Calcolare~il~lavoro~fatto~nella~trasformazione.} \end{aligned}$$

Soluzione: L =
$$1/2 (P_A + P_B)(V_B - V_A) = 4 \cdot 10^3 J$$

Fisica I (E.Massaro, P.Rapagnani, L.Zanello) 19 giugno 2003

- 1- Calcolare l'angolo fra le direzioni dei due vettori A e B nel piano xy di componenti A=(2,2) e B=(1,3).
- 2- Calcolare la potenza media necessaria per portare un treno della massa M=120 tonnellate, inizialmente fermo, alla velocita' V=50 km/h in un tempo $\Delta t=3$ minuti.
- 3- Calcolare l'energia cinetica di un corpo che compie un moto circolare uniforme lungo una circonferenza di raggio $\mathbf{R} = \mathbf{2} \mathbf{m}$ soggetto ad una forza centripeta $\mathbf{F}_c = \mathbf{22} \mathbf{N}$.
- **4-** Un corpo cade verticalmente da un' altezza h_o e nell' urto parzialmente anelastico con il suolo perde il **20%** della sua energia cinetica. Sapendo che nel rimbalzo raggiunge l'altezza massima h_1 = **8 m**, calcolare l' altezza h_o .
- 5- Un corpo compie un moto unidimensionale in un campo di forza conservativo e la sua energia potenziale e' data dalla funzione $U(x) = (ax^4 + bx^2)$. Conoscendo che la sua energia cinetica quando si trova nell'origine e' K = 20 J, calcolare la massima distanza x_{Max} che esso puo' raggiungere. (a = 1 J/m⁴, b=1 J/m²)
- 6- Sull'asse x di un riferimento cartesiano si trovano tre cariche puntiformi $q_1 = -3 \ 10^{-7}$ C, $q_2 = 4 \ 10^{-7}$ C e $q_3 = 7 \ 10^{-7}$ C. Le posizioni delle tre cariche sull'asse x sono: $x_1 = 0.0$ m, $x_2 = 0.3$ m, $x_3 = 0.8$ m.

Calcolare la forza esercitata dalle cariche \mathbf{q}_1 e \mathbf{q}_2 su \mathbf{q}_3 .

- 7- Un condensatore di capacita' C e' inizialmente carico e la differenza di potenziale tra le sue armature e' ΔV_o =70 V. Se la carica $q=2.5~10^{-8}~C$ viene trasportata dall'armatura positiva a quella negativa si osserva che il ΔV tra le armature scende a 45 V. Calcolare la capacita C.
- 8- Un elettrone ($e = 1.6 \ 10^{-19} \ C$, $m = 9.1 \ 10^{-31} \ kg$) in un campo magnetico uniforme $B=0.1 \ T$ descrive un orbita circolare. Calcolare di quanto varia la sua velocita' angolare se l'intensita' del campo viene portata al valore B'=B/3.
- 9- Due sbarre, la prima di allumino e la seconda di rame, poste alla temperatura t_0 =0 °C hanno le lunghezze L_a =0.998 m e L_r =1.000 m. Calcolare a quale temperatura esse avranno la stessa lunghezza.

(Coefficienti di espansione termica: Alluminio: α_a =24 10⁻⁶ 1/°C, Rame: α_r =17 10⁻⁶ 1/°C).

10- Calcolare la variazione di energia interna ΔU di una mole di gas perfetto monoatomico il cui volume è ridotto di ΔV = 0.020 m³ mantenendo la pressione costante a P = 15000 Pa.

INFORMATICA

Fisica I (E.Massaro, P.Rapagnani, L.Zanello) 22 luglio 2003

- 1- Dato il vettore **A** nel piano **xy** di componenti **A** = (3.997, 1.071), di che angolo $\Delta\theta$ si deve ruotare perché formi con la direzione positiva dell'asse delle **x** un angolo di **60** gradi.
- 2- Un cannone lancia un proiettile di massa $\mathbf{m} = 6$ kg con una velocità in uscita di 300 m/s. Il percorso che il proiettile compie nella canna del cannone è di 3 m. Calcolare la forza media che ha agito sul proiettile lungo il precorso all'interno del cannone.
- **3-** Un pendolo, inestensibile e senza attriti, di lunghezza **L=0.6 m** e massa **M=0.3 kg** viene lasciato cadere da un'altezza **h=0.2** m rispetto al punto di minima altezza. Calcolare la componente tangente alla traiettoria della forza agente sul pendolo nell'istante iniziale del suo moto.
- **4-** Calcolare la minima velocita' iniziale che deve avere un corpo per percorrere una distanza S di almeno 4 m su un piano orizzontale con coefficiente di attrito dinamico μ =0.1.
- 5- Un proiettile viene lanciato con velocità iniziale $V_0 = 20$ m/s lungo una direzione che forma un angolo di 60 gradi con il piano orizzontale. Calcolare la distanza (orizzontale) Δx dal punto di lancio alla quale esso ricadra'.
- 6- Due fili rettilinei posseggono carica elettrica positiva uniformemente distribuita. Le densita' lineari di carica sono: $\lambda_1 = 7.5 \times 10^{-7} \text{ C/m}$, $\lambda_2 = 2.25 \times 10^{-6} \text{ C/m}$. Il primo filo coincide con l'asse z di un riferimento cartesiano; il filo 2, parallelo al filo 1, giace nel piano xz e interseca l'asse x in $\mathbf{x}_2 = \mathbf{0.6}$ m. Trovare la posizione di un punto sull'asse x (a distanza finita dai fili) dove e' nullo il campo elettrico. (Si assuma lunghezza infinita per i fili. Campo di filo infinito: $\mathbf{E} = \lambda/(2\pi\epsilon_0 \mathbf{r})$).
- 7- Tre superfici piane indefinite uniformemente cariche sono parallele tra loro e distanti $\mathbf{d} = \mathbf{1}$ mm l'una dall'altra. Conoscendo le densità di carica su ciascuna superficie, $\sigma_1 = \mathbf{1}$ $\mathbf{10}^{-5}$ $\mathbf{C/m^2}$, $\sigma_2 = \mathbf{3}$ $\mathbf{10}^{-5}$ $\mathbf{C/m^2}$, $\sigma_3 = \mathbf{8}$ $\mathbf{10}^{-5}$ $\mathbf{C/m^2}$, calcolare la differenza di potenziale tra la superficie 1 e la superficie 3.
- **7a-** Due superfici piane indefinite isolanti, sono parallele tra loro e distanti d=1 cm. Le due superfici sono uniformemente cariche con densità di carica differenti, pari a $\sigma_1 = 1 \ 10^{-5} \ C/m^2$ sulla prima superficie e $\sigma_2 = 3 \ 10^{-5} \ C/m^2$ sulla seconda. Calcolare modulo, direzione e verso del campo elettrico tra la due superfici.
- **8-** Un solenoide è costiuito da $N_1 = 100$ spire percorse dalla corrente $I_1 = 1$ A. Coassiale con il primo solenoide è un altro solenoide con $N_2 = 50$ spire percorse dalla corrente I_2 . Calcolare il valore di I_2 perché il campo totale I_3 interno ai due solenoidi sia nullo.

- 9- Calcolare la quantità di calore che si deve fornire ad una mole di gas perfetto in una trasformazione isoterma reversibile alla temperatura T=320~K in cui la pressione varia da $P_1=30000~Pa$ a $P_2=10000~Pa$.
- **10-** La camera d'aria di un'auto alla temperatura di 20°C, viene gonfiata a una pressione di 3.0 Atm. Più tardi lo pneumatico si riscalda raggiungendo una temperatura di 50°C. Assumendo che l'aria nello pneumatico si comporta come un gas perfetto e che il volume a sua disposizione non è variato, calcolare la pressione finale nella camera d'aria.

C.L.: INFORMATICA e TECNOLOGIE INFORMATICHE

Fisica I Prova di esame del 11/09/2003

N.B. Si consiglia di scrivere le soluzioni dei problemi in forma sintetica e chiara, sviluppando, dove possibile, i calcoli in forma letterale in modo da giustificare la formula risolutiva.

- 27. Calcolare il modulo del vettore somma S = A+B, sapendo che |A| = 4.00 m, |B| = 2.50 m e che l'angolo compreso tra essi è $\alpha = 60^{\circ}$.
- 28. Calcolare l'altezza massima y_m che raggiunge un proiettile lanciato verticalmente verso l'alto che passa alla quota y_l con velocità v_1 , considerando trascurabile la resistenza dell'aria.

Dati: $y_1 = 35.0 \text{ m}$; $v_1 = 20.0 \text{ m/s}$

29. Un corpo di massa m si muove lungo una traiettoria rettilinea su un piano orizzontale scabro, con coefficiente di attrito dinamico μ . Su esso agisce una forza orizzontale costante F. Sia ΔK variazione di energia cinetica del corpo dopo che esso ha percorso un tratto Δx , calcolare la forza F.

Dati: m = 0.50 kg; $\mu = 0.25$; $\Delta x = 3.00 \text{ m}$; $\Delta K = -12.0 \text{ J}$

30. Due corpi di massa m_1 e m_2 si muovono in verso opposto lungo la stessa retta con velocità di uguale modulo v. Essi urtano simultaneamente in modo completamente anelastico un terzo corpo inizialmente fermo di massa m_3 . Calcolare il modulo della velocità con cui si muovono i tre corpi insieme dopo l'urto.

Dati: $m_1 = 0.30 \text{ kg}$; $m_2 = 0.50 \text{ kg}$; $m_3 = 0.20 \text{ kg}$, v = 4 m/s

31. Per misurare la costante elastica k di una molla, posta su piano orizzontale liscio, si lancia contro la sua estremità libera (l'altra viene mantenuta fissa) un corpo di massa m e velocità v, che vi resta agganciato, e si misura il massimo accorciamento Δx. Calcolare il valore di k.

Dati: m = 0.25 kg; v = 8.00 m/s; $\Delta x = 0.16 \text{ m}$

32. Si consideri una distribuzione sferica di raggio R con densità (volumica) di carica elettrica uniforme ρ . Conoscendo il valore del campo elettrico E ad una distanza dal centro pari alla metà del raggio, calcolare ρ .

Dati: $E = 4 \cdot 10^5 \text{ V/m}$; R = 0.01 m

33. Due resistori, rispettivamente di resistenze R_1 e R_2 , sono collegati in parallelo con una pila di forza elettromotrice V. Calcolare l' intensità della corrente elettrica I_1 che attraversa il resistore R_1 , sapendo la potenza totale P erogata dalla pila.

Dati: $R_1 = 200 \text{ Ohm}$; $R_2 = 300 \text{ Ohm}$; P = 180 W

34. Una spira indeformabile di forma circolare, di raggio r, è immersa in un campo di induzione magnetica B uniforme, diretto ortogonalmente al piano della spira. A partire dall'istante iniziale t=0, il campo B viene fatto variare nel

tempo secondo la legge: $B(t) = a \ t^2$. Sapendo che la spira ha resistenza totale R, calcolare la corrente I che scorre nella spira all' istante $t = 2 \ s$.

Dati: r = 0.05 m; $a = 0.50 \text{ T/s}^2$; R = 50 Ohm

35. Si considerino due cicli di Carnot, il primo effettuato tra le temperature T_1 e T_2 ed il secondo, con uguale rendimento, tra le temperature T_a e T_b , con $T_a < T_b$. Si calcoli il valore di T_a , noto T_b .

Dati: $T_1 = 300 \text{ K}$; $T_2 = 480 \text{ K}$; $T_b = 640 \text{ K}$

36. Nel corso di un'espansione isoterma, alla temperatura T, a n moli di gas perfetto viene fornita una quantità di calore Q. Sapendo che il volume iniziale del gas è V_1 , calcolare il volume finale V_2 .

Dati: T = 400 K; n = 2 moli; $Q = 2.00 \cdot 10^3 \text{ J}$; $V_1 = 0.400 \text{ m}^3$

ESAME SCRITTO DI FISICA PER INFORMATICA 30/09/03

(E. Massaro, P.Rapagnani, L.Zanello)

- **1.**Dati due vettori \mathbf{A} e \mathbf{B} , giacenti nel piano (x,y) e di componenti (3,5) e (2,3), rispettivamente, calcolare l'angolo che il vettore somma $\mathbf{A} + \mathbf{B}$ forma con l'asse y.
- **2.**Due auto si muovono a velocita' angolari ω_1 e ω_2 costanti, nello stesso verso, su una pista circolare. Se e' $\omega_1 = 0.015$ rad/s e $\omega_2 = 0.024$ rad/s e al tempo t=0 le due auto sono affiancate, per quale valore minimo di t lo saranno di nuovo?
- **3.**Un corpo compie uno spostamento s=16m lungo la bisettrice del primo quadrante del piano (x,y), nel verso delle x crescenti, per l'azione di una forza costante F di componenti $F_x=4N$ e $F_y=6N$. Calcolare il lavoro fatto dalla forza.
- **4.**Un punto materiale scende lungo un piano inclinato; quando si trova alla quota $h_1 = 1.5$ m la sua velocita' e' $v_1 = 3.2$ m/s. Arrivato a quota zero scivola su un piano orizzontale e quindi risale su un altro piano inclinato di 30°. Considerando tutti i moti senza attrito, calcolare la velocita' del corpo quando ha percorso 0.80 m sul secondo piano inclinato.
- **5.**Un elicottero che procede alla velocita' di 40 km/h e a 300 m di altezza lascia cadere un pacco di medicinali. Trascurando la resistenza dell'aria, calcolare lo spostamento orizzontale tra il punto dell'inizio del moto di caduta e quello di arrivo del pacco a quota zero.
- **6.**Si determini la potenza totale assorbita da un insieme di due resistenze, di 20 e 50 Ω rispettivamente, collegate in parallelo, sotto una differenza di potenziale di 50 V.
- 7. Ai vertici di un esagono regolare di lato L=0.15 cm sono collocate 6 cariche uguali $q=2\mu C$. Calcolare il potenziale elettrico al centro dell'esagono.
- **8.**Un filo rettilineo infinito, disposto come l'asse z, e' percorso da una corrente I, costante, pari a 1.8 A. Il filo e' circondato da un conduttore cilindrico infinito, di raggio R= 1 mm, con asse coincidente con l'asse z, percorso dalla stessa corrente, in verso opposto. Calcolare il modulo del campo magnetico all'interno del cilindro, a distanza R/2 dal filo.
- 9. Un gas perfetto compie una trasformazione reversibile dallo stato (V_A,P_A) allo stato (V_B,P_B) rappresentata sul piano (V,P) da una linea retta. Calcolare la quantita' di calore assorbita.

Dati:
$$V_A = 2.1 \ 10^{-3} \ m^3$$
; $V_B = 10^{-2} \ m^3$; $P_A = 2 \ 10^5 \ Pa$; $P_B = 10^6 \ Pa$

10. Una pentola di acqua alla pressione atmosferica viene portata e poi mantenuta all'ebollizione. Dopo un certo tempo si osserva che sono evaporati 120 g di acqua. Sapendo che il calore latente di evaporazione dell'acqua e' $2.26 \times 10^{-6} \, \text{J/kg}$, calcolare la variazione di entropia dell'acqua.

INFORMATICA
Fisica I
(E.Massaro, P.Rapagnani, L.Zanello)

10 febbraio 2004

- 1- Una particella puntiforme è soggetta a due forze, entrambe di modulo 20 N, che formano un angolo di 60°. Qual'è il modulo della risultante?.
- **2-** Il vettore $A = (A_x, 3)$ forma con il vettore B = (2,2) un angolo di 30° e con l'asse x un angolo $> 45^\circ$.

Calcolare la componente A_x .

3- Un corpo è vincolato a muoversi lungo la bisettrice del primo quadrante del piano x,y (dove si ha x>0, y>0). Il corpo è soggetto a due forze costanti di componenti $F_1 = (5,0)$ N e $F_2 = (0,-2)$ N.

Calcolare la variazione di energia cinetica del corpo dopo che ha percorso d=12 m.

- **4-** Una palla cade da un tavolo orizzontale di altezza $\mathbf{h}_0 = 0.7$ m. Essa arriva al suolo in un punto che dista $\mathbf{S} = \mathbf{30}$ cm dal bordo del tavolo. Qual è la velocità della palla nell'istante in cui abbandona il tavolo?
- 5- Un corpo di massa $\mathbf{m} = 7.5 \text{ kg}$ è sospeso verticalmente ad una molla di costante elastica $\mathbf{k} = 1,2 \cdot 10^3 \text{ N/m}$. Calcolare la variazione della sua energia potenziale totale per raggiungere il punto di equilibrio.
- **6-** Due cariche puntiformi \mathbf{q} e $\mathbf{3q}$ sono poste alla distanza di $\mathbf{D} = \mathbf{12}$ mm. Calcolare il valore di \mathbf{q} sapendo che, in un punto sulla congiungente le due cariche alla distanza $\mathbf{d} = \mathbf{2}$ mm dalla prima carica nella direzione della seconda, il campo elettrico vale $\mathbf{E} = \mathbf{1.98} \ \mathbf{10^7} \ \mathbf{V/m}$.
- 7- Un condensatore di capacità C_1 = 1 μF e' carico e la differenza di potenziale tra le sue armature è ΔV_1 =50 V. Il condensatore viene collegato in parallelo ad un altro condensatore, anch'esso carico,
- $C_2 = 2 \mu F$ con una differenza di potenziale tra le armature di $\Delta V_2 = 20 V$. Calcolare la differenza di potenziale finale ΔV_0 tra le armature dei due condensatori.
- 8- Una spira circolare di raggio $\mathbf{b} = 0.5$ cm giace su un piano su cui si trova un filo rettilineo indefinito percorso da una corrente che varia nel tempo con la legge: $\mathbf{I} = \mathbf{at}$, con $\mathbf{a} = 0.1$ A/s. Il centro della spira dista dal filo $\mathbf{d} = 50$ cm. Calcolare la corrente che scorre nella spira, sapendo che la sua resistenza è $\mathbf{R} = 2$ Ohm. (Si faccia l'approssimazione di campo magnetico uniforme all' interno della spira).
- 9- Un recipiente a pareti rigide è diviso in due parti, separate da un setto fisso e rigido, con alta conducibilità termica. Una parte contiene 2 moli di gas perfetto monoatomico e l'altra 1 mole di gas perfetto biatomico. Calcolare l'aumento di temperatura ΔT del sistema se si fornisce ad esso una quantità di calore $\Delta Q = 120$ J.

10- Un ciclo di Carnot ha rendimento $\eta = 0.6$. Qual'è la temperatura della sorgente fredda T_f , se la temperatura della sorgente calda è $T_c = 450$ K?

INFORMATICA

Fisica I

(E.Massaro, P.Rapagnani, L.Zanello) 24 febbraio 2004

- 1 Calcolare l'angolo che il vettore A forma con l'asse delle x sapendo che i suoi prodotti scalari con i due vettori B (1;1) e C (0;3) sono uguali.
- **2**-Una pallina di massa $\mathbf{m} = \mathbf{0.1}$ kg si muove su una guida circolare liscia di raggio $\mathbf{R} = \mathbf{0.6}$ m posta su un piano orizzontale. All'istante iniziale essa riceve da ferma un impulso $\mathbf{I} = \mathbf{4}$ kg m/s. Calcolare il periodo del moto circolare uniforme che essa compie.
- 3 -Due pendoli di lunghezze $L_1 = 1$ m e $L_2 = 4$ m vengono lasciati oscillare facendoli partire simultaneamente. Dopo quanto tempo si ritroveranno per la prima volta, nella posizione iniziale?
- **4 -** Un corpo di massa $\mathbf{m}_1 = \mathbf{0.5}$ kg e velocità $\mathbf{v}_1 = \mathbf{3}$ m/s urta in modo anelastico un corpo di massa $\mathbf{m}_2 = \mathbf{8}$ kg inizialmente fermo. Dopo l'urto il primo corpo rimbalza con velocità $\mathbf{v}_1' = \mathbf{1}$ m/s. Calcolare la velocità del secondo corpo dopo l'urto.
- $\mathbf{5}$ Una pallina di gomma di massa $\mathbf{m} = \mathbf{0.2}$ kg viene lasciata cadere da un'altezza $\mathbf{h}_0 = \mathbf{3}$ m. Dopo il primo urto al suolo rimbalza ad un'altezza $\mathbf{h}_1 = \mathbf{2.7}$ m. Calcolare l'energia totale dissipata dopo tre rimbalzi, supponendo che la frazione di energia dissipata in ogni rimbalzo sia la stessa.
- **6 -** Una pallina di massa $\mathbf{m}=0.1$ kg e con carica elettrica $\mathbf{q}=10^{-6}$ C è sospesa ad un pendolo in prossimità di un piano verticale di estensione molto grande e carico con densità di carica superficiale uniforme σ . Sapendo che nella posizione di equilibrio il pendolo forma un angolo $\theta=20^\circ$ con la verticale, calcolare σ .
- 7 Un protone ($\mathbf{q}_p = 1.60 \ 10^{-19} \ \mathrm{C}$; $\mathbf{m}_p = 1.67 \ 10^{-27} \ \mathrm{kg}$) e una particella α ($\mathbf{q}_\alpha = 2 \ \mathbf{q}_p$; $\mathbf{m}_\alpha = 4 \ \mathbf{m}_p$) sono poste in un campo magnetico uniforme $\mathbf{B} = 2 \ \mathrm{T}$. Le due particelle hanno la stessa velocità, di modulo $\mathbf{v} = 10^6 \ \mathrm{m/s}$. Calcolare la differenza tra i raggi delle rispettive orbite circolari.
- **8** Per riscaldare **0.500 kg** di acqua distillata alla temperatura iniziale di **15** 0 C si immerge in essa una resistenza di **500 Ohm**, alimentata da un generatore di d.d.p. continua di **400 V**. Calcolare la variazione di temperatura dell'acqua se la resistenza viene accesa per **5 minuti**.
- 9 Una bolla d'aria parte del fondo di un lago e arriva alla sua superficie, mantenendo la sua temperatura costante. Il volume della bolla aumenta di 3 volte viaggiando dal fondo del lago alla superficie. Calcolare la profondità del lago. (Si ricordi che la pressione esercitata da una colonna di liquido di densità ρ alta h è data da $P = \rho hg$)

- Un blocco di metallo alla temperatura T_1 = 450~K e di capacità termica C_1 = 120~J/K è posto in contatto con un corpo di capacità termica C_2 = $3~C_1$ e temperatura T_2 = 200~K. Calcolare la quantità di calore scambiata tra i due corpi