Scritto 1 Luglio 2003

- 1. Essendo $V_C(t) = V_{C_0} e^{-t/\tau}$, $\tau = t_{1/2}/\ln 2 = 0.144 \,\mathrm{ms}$ e quindi $C = \tau/R = 14.4 \,\mathrm{nF}$.
- 2. $Q_0 = C V_{C_0} = 144 \,\mathrm{nC}; U = C V_{C_0}^2/2 = 0.72 \,\mu\mathrm{J}; \Delta U = C/2 \left(V_{C_0}^2 (V_{C_0}/2)^2\right) = 0.54 \,\mu\mathrm{J}.$
- 3. a) $\nu \to 0$: $\vec{Z}_L \to 0$, $\vec{Z}_L \to \infty$: L_1 e L_2 diventano dei corti circuiti, mentre C_2 si comporta come un interruttore aperto, escludendo anche R_3 . $Z_{tot} = R_1 + R_{2,4}$, dove $R_{2,4} = R_2 + R_4 = 20\,\Omega$, ovvero $Z_{tot} = 30\,\Omega$. Da cui segue la seguente partizione: $V_{AB} = V_0\,R_{2,4}/Z_{tot} = 2/3\,V_0 = 6.7\,\mathrm{V}$. b) $\nu \to \infty$: $\vec{Z}_L \to \infty$, $\vec{Z}_L \to 0$: L_1 si comporta come un interrutore aperto, escludendo il resto del circuito, C_1 si comporta come un corto circuito e la differenza ai capi di R_3 vale 0 in quanto non circola corrente: $V_{AB} \to 0$
- 4. $V_{eq} = V_{AB} = 6.7 \,\text{V}$. $R_{eq} = R_1 || (R_2 + R_4) = 6.7 \,\Omega$.
- 5. $\cos \Delta \phi = P/(V_{eff} I_{eff}) = 0.505$, ovvero $|\Delta \phi| = 1.04 \,\mathrm{rad}$ o 59.7°.
- 6. La spira ha una carica $Q=2\pi R\lambda$. La corrente associata alla rotazione della spira è pari a $i=Q/T=Q\nu=2\pi R\lambda\nu$, ove T è il periodo di rotazione. Tale corrente produce un campo magnetico di intensità $B=\mu_0\,i/(2\,R)$. Abbiamo quindi $\nu=i/(2\pi\,R\,\lambda)=2\,R\,B/(2\pi\,\mu_0\,\lambda\,R)=B/(\pi\,\mu_0\,\lambda)=2527\,\mathrm{Hz}$.
- 7. a) Essendo p=0.3 m e f=0.05 m, $q=f\,p/(p-f)=60$ mm e G=-q/p=-0.20, ovvero l'immagine del disco ha un raggio $r'=|G|\,r=0.40$ mm.

 Tutta la luce che è emessa dalla sorgente e passa attraverso l'apertura della lente è focalizzata sull'immagine. b) $\phi=I\,\Delta\Omega$, ove $\Delta\Omega=2\,\pi\,(1-\cos\theta)$. Indicando con R=d/2 il raggio della lente, abbiamo $\cos\theta=p/\sqrt{p^2+R^2}=0.99875$, da cui $\Delta\Omega=7.8$ msr e $\phi=0.78$ lm. c) Essendo l'area dell'immagine pari a $A=\pi\,(G\,r)^2=5.7\times 10^{-7}\,\mathrm{m}^2$, abbiamo un illuminamento $E=\phi/A=1.6\times 10^6$ lx. d) In assenza della lente l'illuminamento sarebbe stato $I/(p+q)^2=772$ lx.