![[Graphics:Images/index_gr_1.gif]](Images/index_gr_1.gif)
![[Graphics:Images/index_gr_2.gif]](Images/index_gr_2.gif)
Attenzione: 1) i comandi seguiti da ";" sono eseguiti senza visualizzare il risultato; 2) il simbolo "%" sta il risultato del comando precedente; 3) la funzione "N[ ]" obbliga a dare risultati "numerici" invece di "risultati esatti". Tutti gli altri simboli e funzioni dovrebbero essere autoesplicativi
![[Graphics:Images/index_gr_4.gif]](Images/index_gr_4.gif)
![[Graphics:Images/index_gr_11.gif]](Images/index_gr_11.gif)
![[Graphics:Images/index_gr_18.gif]](Images/index_gr_18.gif)
![[Graphics:Images/index_gr_25.gif]](Images/index_gr_25.gif)
![[Graphics:Images/index_gr_31.gif]](Images/index_gr_31.gif)
![[Graphics:Images/index_gr_35.gif]](Images/index_gr_35.gif)
![[Graphics:Images/index_gr_40.gif]](Images/index_gr_40.gif)
![[Graphics:Images/index_gr_43.gif]](Images/index_gr_43.gif)
![[Graphics:Images/index_gr_48.gif]](Images/index_gr_48.gif)
![[Graphics:Images/index_gr_55.gif]](Images/index_gr_55.gif)
![[Graphics:Images/index_gr_60.gif]](Images/index_gr_60.gif)
![[Graphics:Images/index_gr_67.gif]](Images/index_gr_67.gif)
![[Graphics:Images/index_gr_74.gif]](Images/index_gr_74.gif)
![[Graphics:Images/index_gr_83.gif]](Images/index_gr_83.gif)
![[Graphics:Images/index_gr_89.gif]](Images/index_gr_89.gif)
![[Graphics:Images/index_gr_98.gif]](Images/index_gr_98.gif)
![[Graphics:Images/index_gr_106.gif]](Images/index_gr_106.gif)
![[Graphics:Images/index_gr_110.gif]](Images/index_gr_110.gif)
![[Graphics:Images/index_gr_118.gif]](Images/index_gr_118.gif)
![[Graphics:Images/index_gr_142.gif]](Images/index_gr_142.gif)
Quindi dev'essere μs > 0.25
![[Graphics:Images/index_gr_146.gif]](Images/index_gr_146.gif)
![[Graphics:Images/index_gr_150.gif]](Images/index_gr_150.gif)
![[Graphics:Images/index_gr_153.gif]](Images/index_gr_153.gif)
![[Graphics:Images/index_gr_156.gif]](Images/index_gr_156.gif)
Quindi dev'essere mm < 0.4 Kg
![[Graphics:Images/index_gr_160.gif]](Images/index_gr_160.gif)
![[Graphics:Images/index_gr_164.gif]](Images/index_gr_164.gif)
![[Graphics:Images/index_gr_167.gif]](Images/index_gr_167.gif)
![[Graphics:Images/index_gr_170.gif]](Images/index_gr_170.gif)
![[Graphics:Images/index_gr_175.gif]](Images/index_gr_175.gif)
![[Graphics:Images/index_gr_180.gif]](Images/index_gr_180.gif)
![[Graphics:Images/index_gr_185.gif]](Images/index_gr_185.gif)
![[Graphics:Images/index_gr_190.gif]](Images/index_gr_190.gif)
Quindi p=(24.3+-1.0)%
Per avere un risultato al 95% bisognera' considerare due sigma, ovvero p=(24.3+-2.0)%, o semplicemente p=(24+-2)%.
![[Graphics:Images/index_gr_193.gif]](Images/index_gr_193.gif)
![[Graphics:Images/index_gr_196.gif]](Images/index_gr_196.gif)
Ovvero μ = 2.345 +- 0.012.
Al 95%: μ = 2.345 +- 0.024.
calcoliamo P(2.34 <= μ <= 2.35) dalla distribuzione di Gauss:
![[Graphics:Images/index_gr_199.gif]](Images/index_gr_199.gif)
![[Graphics:Images/index_gr_200.gif]](Images/index_gr_200.gif)
Ovvero facendo numericamente l'integrale
![[Graphics:Images/index_gr_202.gif]](Images/index_gr_202.gif)
... oppure dalle tabelle
![[Graphics:Images/index_gr_205.gif]](Images/index_gr_205.gif)
Ciascuna Xi e' uniforme con Ex=0.5 e Sigmax=1/=0.29
Chiamando Y=i, abbiamo che Y e' approssimativamente gaussiana con Y=
i = 2.5 e Var=
i = 0.42,
![[Graphics:Images/index_gr_211.gif]](Images/index_gr_211.gif)
Abbiamo
![[Graphics:Images/index_gr_216.gif]](Images/index_gr_216.gif)
![[Graphics:Images/index_gr_218.gif]](Images/index_gr_218.gif)
Il valore atteso di Y sara' dato da
![[Graphics:Images/index_gr_223.gif]](Images/index_gr_223.gif)
Mentre
![[Graphics:Images/index_gr_225.gif]](Images/index_gr_225.gif)
Da cui
![[Graphics:Images/index_gr_227.gif]](Images/index_gr_227.gif)
Ovvero Y = (62 +- 4) .
Per capire quale delle quattro grandezze e' maggiormente responsabile dell'incertezza di Y, bisogna considerare i quattro contributi nall'incertezza relativa:
![[Graphics:Images/index_gr_230.gif]](Images/index_gr_230.gif)
--> domina X4 .