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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability
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An helpful diagram

(. . . but NASA guys are afraid of ‘subjective’, or ‘psychological’)
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Beliefs and ‘coherent’ bets
Remarks

◮ Subjective does not mean arbitrary!
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◮ Subjective does not mean arbitrary!
◮ How to force people to assess how much they are confident on

something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn as
3,512th part of that of the sun. Applying my probabilistic
formulae to these observations, I find that the odds are
11,000 to 1 that the error in this result is not a hundredth
of its value.” (Laplace)
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Beliefs and ‘coherent’ bets
Remarks

◮ Subjective does not mean arbitrary!
◮ How to force people to assess how much they are confident on

something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn as
3,512th part of that of the sun. Applying my probabilistic
formulae to these observations, I find that the odds are
11,000 to 1 that the error in this result is not a hundredth
of its value.” (Laplace)

→ P(3477 ≤ MSun/MSat ≤ 3547 | I (Laplace)) = 99.99%

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?
It does not imply one has to be 95% confident on something!
If you think so, then you could make a bad bet!
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A clear statement from a honest expert
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Beliefs and bet

“It is scientific only to say what is more likely and
what is less likely”
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Beliefs and bet

“It is scientific only to say what is more likely and
what is less likely”

“Although I felt sure that parity would not be violated,
there was a possibility that it would be, and it was
important to find out.
‘Would you bet a hundred dollars a dollar that parity is
not violated?’ he asked.
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Beliefs and bet

“It is scientific only to say what is more likely and
what is less likely”

“Although I felt sure that parity would not be violated,
there was a possibility that it would be, and it was
important to find out.
‘Would you bet a hundred dollars a dollar that parity is
not violated?’ he asked.
‘No. But fifty dollars I will’”

(Feynman)
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Beliefs and bet
Even Kant sponsors it. . .

“The usual touchstone, whether that which someone as-
serts is merely his persuasion – or at least his subjective
conviction, that is, his firm belief – is betting.
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Beliefs and bet
Even Kant sponsors it. . .

“The usual touchstone, whether that which someone as-
serts is merely his persuasion – or at least his subjective
conviction, that is, his firm belief – is betting. It often
happens that someone propounds his views with such po-
sitive and uncompromising assurance that he seems to ha-
ve entirely set aside all thought of possible error.
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serts is merely his persuasion – or at least his subjective
conviction, that is, his firm belief – is betting. It often
happens that someone propounds his views with such po-
sitive and uncompromising assurance that he seems to ha-
ve entirely set aside all thought of possible error. A bet
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Beliefs and bet
Even Kant sponsors it. . .

“The usual touchstone, whether that which someone as-
serts is merely his persuasion – or at least his subjective
conviction, that is, his firm belief – is betting. It often
happens that someone propounds his views with such po-
sitive and uncompromising assurance that he seems to ha-
ve entirely set aside all thought of possible error. A bet
disconcerts him. Sometimes it turns out that he has a con-
viction which can be estimated at a value of one ducat,
but not of ten. For he is very willing to venture one ducat,
but when it is a question of ten he becomes aware, as he
had not previously been, that it may very well be that he
is in error.”
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Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
#times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equally possible cases

p =
#times the event has occurred

# independent trials under same conditions

Note!: “lorsque rien ne porte à croire que l’un de ces cas doit arriver
plutot que les autres” (Laplace)

Replacing ‘equi-probable’ by ‘equi-possible’ is just cheating
students (as I did in my first lecture on the subject. . . ).

c© GdA, PhLab-03 27/04/21 9/34



Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
#times the event has occurred

# independent trials under same condition

Future ⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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Standard textbook definitions
It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
#times the event has occurred

# trials under

Future ⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications

Future ⇔ Past: avoid the end of the inductivist turkey!
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory
(under well defined assumptions).
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory
(under well defined assumptions):
⇒ Laplace’s rule of succession (see later)
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Mathematics of beliefs

The good news:

The basic laws of degrees of belief are the same we get
from the inventory of favorable and possible cases, or
from events occurred in the past.

It can be proved that

the requirement of coherence leads to the famous 4
basic rules =⇒

[ Details skipped. . . ]
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!

(Liberated by a curious ideology that forbids its use)
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A simple, powerful formula
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A simple, powerful formula

P(A |B | I )P(B | I ) = P(B |A, I )P(A | I )
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
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A simple, powerful formula

[ Bayes Theorem ]
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)
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Laplace’s “Bayes Theorem”
“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)

[ In general P(E ) =
∑

j P(E |Cj)P(Cj) (weighted average, with
weigths being the probabilities of the conditions) if Cj form a
complete class of hypotheses ]
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

c© GdA, PhLab-03 27/04/21 17/34



Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

c© GdA, PhLab-03 27/04/21 17/34



Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.

◮ There is no conceptual problem with the fact that
P(data |H1)→ 0 (e.g. 10−37), provided the ratio
P(data |H0)/P(data |H1) is not undefined.
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)

If H0 and H1 are ‘complementary’, that is H1 = H0, then

posterior odds = Bayes factor× prior odds
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But statistical tests do work!

Someone would object that p-values and, in general, ‘hypothesis
tests’ usually do work!
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But statistical tests do work!

Someone would object that p-values and, in general, ‘hypothesis
tests’ usually do work!

◮ Certainly! I agree!
As it usually work overtakes in curve
on remote mountain road!
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But statistical tests do work!

Someone would object that p-values and, in general, ‘hypothesis
tests’ usually do work!

◮ Certainly! I agree!
As it usually work overtakes in curve
on remote mountain road!

◮ But now we are also able to explain the reason.
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But statistical tests do work!

f(θ)

θmis θ

H0

p−value = 0.010

Why should the observation of θmis should diminish our confidence
on H0?
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But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

Because often we give some chance to a possible alternative
hypothesis H1, even if we are not able to exactly formulate it.
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But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

Indeed, what really matters is not the area to the right of θmis .
What matters is the ratio of f (θmis |H1) to f (θmis |H0)!
⇒ to a ‘small’ area it corresponds a ‘small’ f (θmis |H0).
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But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

But is the alternative hypothesis H1 is unconceivable, or hardly
believable, the ‘smallness’ of the area is irrelevant
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

c© GdA, PhLab-03 27/04/21 20/34



Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive Gaussian distribution

◮ f (µ | {x}) ∝ f ({x} |µ) · f0(µ)
◮ f0(µ) ‘flat’ (all values a priory equally possible)

◮ posterior maximized at µ = x
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

◮ E1 = White

◮ E2 = Black
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

c© GdA, PhLab-03 27/04/21 22/34



Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
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P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus’ in
measurements.
→ likelihood (traditional, rather confusing name!)

c© GdA, PhLab-03 27/04/21 22/34



Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
(taking into account all possible hypotheses Hj)
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely

‘decomposition law’: P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )
(→ Easy to check that it gives P(Ei | I ) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )·P(Hj | I )∑
j P(Ei |Hj , I )·P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )
◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

We are ready!
−→ Let’s play with our toy
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We are ready

Now that we have set up our formalism, let’s play a little

◮ analyse real data

◮ some simulations

◮ make variations
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We are ready

Now that we have set up our formalism, let’s play a little

◮ analyse real data

◮ some simulations

◮ make variations

Let’s play!

◮ Hugin Expert (Lite – demo version);

◮ R scripts
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).
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Learning by simulations

◮ History of P(Hj | obs. sequence).
◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
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◮ Why does the Bayesian solution performs better?
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◮ History of P(Hj | obs. sequence).
◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).
◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).
◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?

NO!
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).
◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?

NO!
◮ Don’t even think: frequentists refuse to assign probabilities to

hypotheses (in general), to causes, to true values, etc.
(And you have seen the results. . . )
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How does it work?

Simple case (no reporter/composition/etc. complications)
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How does it work?

Simple case (no reporter/composition/etc. complications)

◮ Update probabilities of hypotheses (cause, Box): inference:

P (n)(Bj) ∝ P(E
(n)
i |Bj) · P (n−1)(Bj)
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How does it work?

Simple case (no reporter/composition/etc. complications)

◮ Update probabilities of hypotheses (cause, Box): inference:

P (n)(Bj) ∝ P(E
(n)
i |Bj) · P (n−1)(Bj)

◮ Update probabilities of next extraction: prediction:

P (n+1)(Ei) =
∑

j

P(Ei |Bj) · P (n)(Bj)
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How does it work?
General case (more complicate ‘network’)
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):

◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):

◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):

◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .

◮ Condition on the ‘observations’:

P(C ,B ,E ,R(k>n) |R(k≤n)) =
P(C ,B ,E ,R)

P(R(k≤n))
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):

◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .

◮ Condition on the ‘observations’:

P(C ,B ,E ,R(k>n) |R(k≤n)) =
P(C ,B ,E ,R)

P(R(k≤n))

No real distinction between inference and prediction
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Preparation (‘C ’ not to confuse it
with ‘Probability’) and a Reporter for each estraction (R):

◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .

◮ Condition on the ‘observations’:

P(C ,B ,E ,R(k>n) |R(k≤n)) =
P(C ,B ,E ,R)

P(R(k≤n))

No real distinction between inference and prediction

(We shall see it later in the case of continuous distributions)
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:
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This is the original problem in the theory of chances solved by
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◮ imagine you roll a ball at random on a billiard;
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:

◮ imagine you roll a ball at random on a billiard;

◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball
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◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball

◮ then you roll at random other balls
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length (l/L) and remove the ball

◮ then you roll at random other balls
◮ write down if it stopped left or right of the first ball;

c© GdA, PhLab-03 27/04/21 27/34



Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:

◮ imagine you roll a ball at random on a billiard;

◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball

◮ then you roll at random other balls
◮ write down if it stopped left or right of the first ball;
◮ remove it and go on with n balls.
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:

◮ imagine you roll a ball at random on a billiard;

◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball

◮ then you roll at random other balls
◮ write down if it stopped left or right of the first ball;
◮ remove it and go on with n balls.

◮ Somebody has to guess the position of the first ball knowing
only how many balls stopped left and how many stopped right
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:

◮ imagine you roll a ball at random on a billiard;

◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball

◮ then you roll at random other balls
◮ write down if it stopped left or right of the first ball;
◮ remove it and go on with n balls.

◮ Somebody has to guess the position of the first ball knowing
only how many balls stopped left and how many stopped right

Although Bayes never mentioned a billiard
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:

◮ imagine you roll a ball at random on a billiard;

◮ you mark the relative position of the ball along the billiard’s
length (l/L) and remove the ball

◮ then you roll at random other balls
◮ write down if it stopped left or right of the first ball;
◮ remove it and go on with n balls.

◮ Somebody has to guess the position of the first ball knowing
only how many balls stopped left and how many stopped right

Although Bayes never mentioned a billiard
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p

f (p | S , S) ∝ f (S | p) · f (p | S) = p2

c© GdA, PhLab-03 27/04/21 28/34



Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p

f (p | S , S) ∝ f (S | p) · f (p | S) = p2

f (p | S , S ,F ) ∝ f (F | p) · f (p | S , S) = p2(1− p)
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p

f (p | S , S) ∝ f (S | p) · f (p | S) = p2

f (p | S , S ,F ) ∝ f (F | p) · f (p | S , S) = p2(1− p)

. . . . . .

f (p |#S ,#F ) ∝ p#S(1− p)#F = p#S(1− p)(n−#s)
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left↔ Success:
◮ l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p

f (p | S , S) ∝ f (S | p) · f (p | S) = p2

f (p | S , S ,F ) ∝ f (F | p) · f (p | S , S) = p2(1− p)

. . . . . .

f (p |#S ,#F ) ∝ p#S(1− p)#F = p#S(1− p)(n−#s)

f (p | x , n) ∝ px(1− p)(n−x) [x = #S ]
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

◮ Increase the number of balls

n : 6→∞

⇒ p continuous in [0, 1]
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

◮ Increase the number of balls

n : 6→∞

⇒ p continuous in [0, 1]

◮ Generalize White/Black −→ Success/Failure

⇒ efficiencies, branching ratios, . . .
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

⇒ In the light of the experimental information
there will be values of p we shall believe more,
and others we shall believe less.
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P(pi |O1,O2, . . .) P(pi |X , n)
f (p |O1,O2, . . .) f (p |X , n)
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P(pi |O1,O2, . . .) P(pi |X , n)
f (p |O1,O2, . . .) f (p |X , n)

∝ f (O1,O2, . . . | p) · f0(p) ∝ f (X | n, p) · f0(p)
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Inferring Bernoulli’s trial parameter p

Making several independent trials assuming the same p

p

O1 O2
. . .

p

X

n trials

“independent Bernoulli trials” “binomial distribution”

P(pi |O1,O2, . . .) P(pi |X , n)
f (p |O1,O2, . . .) f (p |X , n)

Are the two inferences the same?
(not obvious in principle)
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n independent Bernoulli processes
General case
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n independent Bernoulli processes
General case

Model

p n

x
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
= f (x | p, n) · f (n | p) · f (p)
= f (x | p, n) · f (p) · f (n)

(n and p are independent)
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√
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Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

c© GdA, PhLab-03 27/04/21 32/34



n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’)

c© GdA, PhLab-03 27/04/21 32/34



n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’) → f (p | n, x)

c© GdA, PhLab-03 27/04/21 32/34



n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’) → f (p | n, x):
→ ?
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n independent Bernoulli processes
Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)
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n independent Bernoulli processes
Graphical models of the typical problems
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√√

→ f (x | n, p)

p n

x

√

√ → f (p | n, x)
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The End

c© GdA, PhLab-03 27/04/21 34/34


