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Although other ‘methods’ might be more popular

[ Plus other prescriptions you might imagine. . . |
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n independent Bernoulli processes

General case

Model

Joint pdf (omitting background condition /):

f(X7p7n) = f(X|pan)'f(p7n)
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n independent Bernoulli processes

General case

Model

Joint pdf (omitting background condition /):

f(X7p7n) = f(X|pan)'f(p7n)
f(x|p,n)-f(pln)- f(n)

= f(x|p,n)-f(nlp) f(p)
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n independent Bernoulli processes

General case

Model

Joint pdf (omitting background condition /):

f(x,p,n)

f(x|p,n)-f(p,n)

f(xIp,n)-f(pln)- f(n)
f(x|p,n)-f(nlp)-f(p)
f(x|p,n)-f(p)-f(n)

(n and p are independent)
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n independent Bernoulli processes

Usual case — n fixed (for the moment)

Model
D D
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Joint pdf

f(x,pln) = f(x|p,n)-f(p)

Typical problems

» pis assumed — interested in (x| n, p)
— well known binomial;

» x is assumed (‘observed’) — f(p|n,x):
— 7
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n independent Bernoulli processes
Graphical models of the typical problems

v Vv

— f(x|n,p)
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n independent Bernoulli processes
Inferring p

f(p,x|n)
f(x|n)
f(x|n,p)-fo(p)
f(x|n)
f(x|n,p)-fo(p)
Jo F(x|n,p) - fo(p) dp

x f(x[n,p)-folp)
(denominator just normalization!)

fplx,n) =
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Inferring “Bernoulli's p"”

We just need to make explicit (x| n, p):
nl

f(x[n,p) = (Z) pr(l—p) = mpx(l—p)"’x

We get then, including normalization:

(n ,)7(!)|X| P (1 B )n—x fo(p)
fo n—x)Tx! X)lxl p<(1—p)"—>f(p)dp

f(p|x,n)
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Inferring “Bernoulli's p"”

We just need to make explicit (x| n, p):
nl

f(xInp) = (Z) S P T A

We get then, including normalization:
(n— X)'XI P (1 - ) o fo(p)
fo n—x)Tx! X)lxl p* (1 —p)"—>f(p)dp

p(1—p)">f(p)
Jop< (1= p)>f(p)dp

(The binomial coefficient is irrelevant, not depending on p)

fplx,n) =
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p*(1—p)"f(p)
Jop* (1= p)">f(p)dp

fplx,m) =
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Inferring “Bernoulli's p"”

px(l )'H(f(P)
Jop* (L= p)r=x£(p)dp

For teaching purposes we start from a uniform prior,
ie. l(p) =1

fplx,m) =

f(plx.n) =
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Inferring “Bernoulli's p"”

Px(l p)" > fo(P)
Jop* (1= p)">f(p)dp

For teaching purposes we start from a uniform prior,
ie. l(p) =1

fplx,m) =

X(l —p)
JoP* (1= p)r—>dp

f(plx.n) =

» The integral at the denominator is the special function “3"
(also defined for real values of x and n).
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Inferring “Bernoulli's p"”

Px(l p)" > fo(P)
Jo P (1= p)r=fi(p)dp

For teaching purposes we start from a uniform prior,
ie. l(p) =1

fplx,m) =

X(l —p)
JoP* (1= p)r—>dp

f(plx.n) =

» The integral at the denominator is the special function “3"
(also defined for real values of x and n).

P In our case these two numbers are integer and the integral

becomes equal to
x!(n— x)!

(n+1)!
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Inferring “Bernoulli's p"”
Solution for uniform prior (think to Bayes’ billard)

flplx,n) = mpxu_p)n—x
= (0D )
10
f(p)
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o Leiii
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Inferring “Bernoulli's p"”

Summaries of the posterior distribution

pm =mode(p) = x

x+1

n+2
“recursive Laplace formula”

E(p) =

(“Laplace’s rule of succession™)

(x+1)(n—x+1)

Verle) = T3 nt2p
x+1/n+2 x+1 1

- n+2<n+2_n+2>n+3
1

n+3
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> We have used the “first”(*) p trials to learn about “p”.
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> What will be the probability of other trials?
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Inferring the “Bernoulli’'s p”
About the meaning of E(p)
> We have used the “first”(*) p trials to learn about “p”.

[*) “First” does not imply time order, but just order in usage.]
> What will be the probability of other trials?

> If we were sure about p, then p would be our probability:
P(Eilp)=p

» But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

1
P(Enlxin) = APMHmf@MmNp

1
= [ o fplxm)dp = Ep) (1)

E(p) (and not the mode!) is the probability of every ‘future’ event
which is believed to have the same p of the ‘previous’ ones.
(But keep in mind the inductivist turkey!) [T




Inferring the “Bernoulli’'s p”

Large number behaviour
When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p <+ q):
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Inferring the “Bernoulli’'s p”
Large number behaviour
When the number of successes and the number of failures become

‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p <+ q):

E(p) ~ Pm= %
Var(p) ~ = (1-2) i:f’m(ln_”m)
o(p)(=0op) = Pm(l—pm) 1
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Inferring the “Bernoulli’'s p”

Large number behaviour
When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p <+ q):

X

E(p) ~ pm:E
X x\ 1 pm(l_pm)
Var(p) = (1) =

Pm (1 - pm) 1

oo o)~ P o
Moreover f(p) tends to a Gaussian distribution:

p ~ N(Pmao'p)
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Inferring the “Bernoulli’'s p”

Large number behaviour
When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p <+ q):

X

E(p) ~ pm:E
X x\ 1 pm(l_pm)
Var(p) = (1) =

Pm (1 - pm) 1

oo o)~ P o
Moreover f(p) tends to a Gaussian distribution:
p ~ N(pm, Up)

When n — oo, then 0, — 0, — and hence
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Inferring the “Bernoulli’'s p”

Large number behaviour
When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p <+ q):

X

E(p) ~ pm:E
X x\ 1 pm(l_pm)
Var(p) = (1) =

Pm (1 - pm) 1

oo o)~ P o
Moreover f(p) tends to a Gaussian distribution:
p ~ N(pm, Up)

When n — oo, then 0, — 0, — and hence

P(Eisn|x,n) " —

(Similarly to Bernoulli's theorem, it is not a ‘mathematical’ limit!
@© GdA, PhLab-04 04/05/21  16/80
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> n large;
> x large;
» and (n — x) large
(remember: in the binomial what is ‘success’ and what is ‘failure

is not absolute: p+— g=1—p)
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Large number behaviour: summary
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> n large;
> x large;
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(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p «— g =1— p),
then

X
E N —
(p) -
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Inferring the “Bernoulli’'s p”
Large number behaviour: summary
When
> n large;
> x large;
» and (n — x) large
(remember: in the binomial what is ‘success’ and what is ‘failure’
is not absolute: p «— g =1— p),

then
X
E(p) ~ -
(p) ~ 1 f(l f)
o\p) = v/n\ n n
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Inferring the “Bernoulli’'s p”
Large number behaviour: summary
When
> n large;
> x large;
» and (n — x) large
(remember: in the binomial what is ‘success’ and what is ‘failure’
is not absolute: p «— g =1— p),
then

PAK
S
%

X
n

1 X X
~ =[5 (1-2)
o(p) vn\ n ( n
— f(p| x, n) tends to Gaussian,
a reflection of the Gaussian limit of f(x| p, n)
— The probability of a future events is evaluated
from the relative frequency of the past events




Inferring the “Bernoulli’'s p”
Large number behaviour: summary
When
> n large;
> x large;
» and (n — x) large
(remember: in the binomial what is ‘success’ and what is ‘failure’
is not absolute: p «— g =1— p),
then

PAK
S
%

X
n

1 X X
o)~ e (7))
— f(p| x, n) tends to Gaussian,
a reflection of the Gaussian limit of f(x| p, n)
— The probability of a future events is evaluated
from the relative frequency of the past events
— No need of ‘frequentistic definition’!
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Probability vs frequency

Frequency and probability are related in probability theory:

> Relative frequencies of successes in future trials can be
‘forecasted’ from p (Bernoulli theorem).

» Proability p can be evaluated from past frequencies, under
some assumptions (‘Bayes theorem' — Laplace’s rule)

BUT

» There is no need to identify the two concepts.

» It does not justify the frequentistic definition.
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Propagation of errors in the evaluation of efficiency

From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)

Da questa analisi si ottengono

N = (82502+287)  ng = (82378 + 287).

dove on(m)=4/N(n).
Da N e ng si ricava il valore dell’efficienza in Pos 1:
ng

~ = (09847)%

€S(Pos1) =
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Propagation of errors in the evaluation of efficiency

From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)

Da questa analisi si ottengono

N = (82502 + 287) ng = (82378 + 287).
dove on(m)=4/N(n).
Da N e ng si ricava il valore dell’efficienza in Pos 1:

ng

~ = (09847)%

€S(Pos1) =

on: 177
op: 177
(hereafter ng — n)
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Propagation of errors in the evaluation of efficiency

From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)

Da questa analisi si ottengono

N = (82502 + 287) ng = (82378 + 287).
dove on(m)=4/N(n).
Da N e ng si ricava il valore dell’efficienza in Pos 1:
g L

N

(99.847)%

€S(Pos1) =

on: 177
op: 177
(hereafter ng — n)
> N—n=124
— with oy = 0, = 287:
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Propagation of errors in the evaluation of efficiency

From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)

Da questa analisi si ottengono

N = (82502 + 287) ng = (82378 + 287).
dove on(m)=4/N(n).
Da N e ng si ricava il valore dell’efficienza in Pos 1:
g L

N

€S(Pos1) = (99.847)%

on: 177
op: 177
(hereafter ng — n)
> N—n=124
— with oy = 0, = 287: efficiency could be > 1:
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Propagation of errors in the evaluation of efficiency

From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)

Da questa analisi si ottengono

N = (82502 + 287) ng = (82378 + 287).
dove on(m)=4/N(n).
Da N e ng si ricava il valore dell’efficienza in Pos 1:
g L

N

€S(Pos1) = (99.847)%

on: 177
op: 177
(hereafter ng — n)
> N—n=124
— with oy = 0, = 287: efficiency could be > 1: 777
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
! \/o+ s (4.51)
o=— — g
N N
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
! \/o+ s (4.51)
o=— — g
N N

» Statistical ‘error’
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
L/t 2 (4.51)
0=—4/n+— ’
N N

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
L/t 2 (4.51)
0=—4/n+— ’
N N

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?
c=x\yrt N (4.51)

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n)
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
L/t 2 (4.51)
0=—4/n+— ’
N N

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 7?77
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?
g = N n-+ ﬁ (451)

» Statistical ‘error’ (meant as ‘uncertainty’) obtained

propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 7?77
» Eq.(4.51) correctly follows
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?
g = N n-+ ﬁ (451)

» Statistical ‘error’ (meant as ‘uncertainty’) obtained

propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 7?77
» Eq.(4.51) correctly follows from the bad reasoning /
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?
g = N n-+ ﬁ (451)

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 7?77

» Eq.(4.51) correctly follows from the bad reasoning /
— 0. = 0.0049 ~ 0.005
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 777
» Eq.(4.51) correctly follows from the bad reasoning /
— o = 0.0049 ~ 0.005
» How much is it wrong?

() 1/¥Ny/n/N-(1+n/N)
o(e)eoreet 1/vV/N/n/N-(1 = n/N)




Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 777
» Eq.(4.51) correctly follows from the bad reasoning /
— o = 0.0049 ~ 0.005
» How much is it wrong?
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o(e)corect 1/V/N\/n/N-(1— n/N)
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Propagation of errors in the evaluation of efficiency

e Errore statistico. La stima di questo errore si ottiene con la propagazione degli
errori di una funzione di due variabili sperimentali indipendenti (N,n) e si ricava

dalla seguente espressione:
i1 n?

» Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). ..
» ...from two independent experimental values (N, n) 777
» Eq.(4.51) correctly follows from the bad reasoning /
— o = 0.0049 ~ 0.005
» How much is it wrong?

ofe) s 1/\/N\/n/N-(1+n/N):\/l+em
o(e)corect 1/V/N\/n/N-(1— n/N)
= 36

1—enm




Propagation of errors. .. and of mistakes

Eseguendo queste operazioni otteniamo il seguente risultato:

€s(Post) = (99.847 £ 0,005¢t2%) + 0, 010¢*1)) %,
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Propagation of errors. .. and of mistakes

Eseguendo queste operazioni otteniamo il seguente risultato:

€s(Post) = (99.847 £ 0,005¢t2%) + 0, 010¢*1)) %,

> Finally,
the wrong 0. = 0.005 = 0.5% becomes 0.005%

@© GdA, PhLab-04



Propagation of errors. .. and of mistakes

Eseguendo queste operazioni otteniamo il seguente risultato:

€s(Post) = (99.847 £ 0,005¢t2%) + 0, 010¢*1)) %,

> Finally,
the wrong o, = 0.005 = 0.5% becomes 0.005% = 0.00005
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Propagation of errors. .. and of mistakes

Eseguendo queste operazioni otteniamo il seguente risultato:

€s(Post) = (99.847 £ 0,005¢t2%) + 0, 010¢*1)) %,

> Finally,
the wrong o, = 0.005 = 0.5% becomes 0.005% = 0.00005

s
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Propagation of errors. .. and of mistakes

Eseguendo queste operazioni otteniamo il seguente risultato:

€s(Post) = (99.847 £ 0,005¢t) 4 0, 010(is1)) 9,

> Finally,
the wrong o, = 0.005 = 0.5% becomes 0.005% = 0.00005

"4

Good luck to the experiment!
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Inferring the “Bernoulli’'s p”

Approximate solution using the ‘Gaussian trick’

Exercise

» Given f(p) o< p* (1 — p)" %,

» define ¢(p) = —Inf(p)
» and evaluate

de
>

> Lo

dp?
» Then estimate

» E(p) ~ pm, from minimum;

> o2(p) from second derivative at the minimum.
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Inferring “Bernoulli's p"”

Observing x = 0
f(0[Bnp) = (1—p)",




Inferring “Bernoulli's p"”

Observing x = 0
f(0[Bnp) = (1—p)",

17 n
f(p|X207n78) fl((]_:))))"dp
0

=(n+1)(1-p)"




Inferring “Bernoulli's p"”
Observing x = 0
f(0|Bnp) = (1—p)",
(1—p)"
flplx=0,nB) = —f—7"—=(n+1)(1-p)",
fol(l —p)"dp

F(p|X:O7n78) = 1_(1_p)n+1‘




Inferring “Bernoulli's p"”

Observing x = 0

fO0|Bnp) = (1—p)",
(1—p)"
f(p|x=0,nB) = —————=(n+1)(1-p)",
fol(l —p)"dp
F(p|X:O7n78) = 1_(1_p)n+1‘
x =0
n=3
o4 o8 08 1
P
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Inferring “Bernoulli's p"”

Observing x = 0
f(0[Bnp) = (1-p)",
(1 B p)n n
f(p|x=0,nB) = —————=(n+1)(1-p)",
fol(l —p)"dp

F(p|X:O7n78) = 1_(1_p)n+1‘

To get the 95 % probability upper bound:
F(po|x=0,nB) = 0.95,
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Inferring “Bernoulli's p"”

Observing x = 0
f(0[Bnp) = (1-p)",
(1 B p)n n
f(p|x=0,nB) = —————=(n+1)(1-p)",
fol(l —p)"dp

F(p|X:O7n78) = 1_(1_p)n+1‘

To get the 95 % probability upper bound:
F(po|x=0,nB) = 0.95,

+1
po = 1— "V0.05.




Inferring “Bernoulli's p"”

Observing x = n

f(n| Bn,p) = p’




Inferring “Bernoulli's p"”

Observing x = n

f(n|Bnp) = p"
f(plx=n,B) =




Inferring “Bernoulli's p"”

Observing x = n

f(n|Bnp)
f(p|x=n,B)
F(p|x=n,B)

95% probability lower bound

F(po |x = n,B)

Po

0.05,

"v0.05.
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Inferring the “Bernoulli’'s p”

A glance to upper/lower probabilistic limits

Probability level = 95 %
n X=n x=0
binomial binomial | Poisson approx.
(po = 3/”)
3| p>047 | p<0.53 p<l1
5| p>061 | p<0.39 p <0.6
10| p>0.76 | p<0.24 p<0.3
50| p>0.94 | p<0.057 p <0.06
100 | p>0.97 | p<0.029 p <0.03
1000 | p > 0.997 | p <0.003 p <0.003
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Upper/lower probability bounds — caveat!

The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1
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Upper/lower probability bounds — caveat!

The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1

» A flat prior seems armless. . .

®© GdA, PhLab-04 04/05/21  26/80



Upper/lower probability bounds — caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1
» A flat prior seems armless. . .
» . .but it isn't!
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Upper/lower probability bounds — caveat!

The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1

» A flat prior seems armless. . .
» . .but it isn't!

» Imagine that p refers to a branching ratio:
fo(p) = 1 implies

P(p<0.1) = P(p>0.9)
P(p <0.01)[= P(p = 0.99)]
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Upper/lower probability bounds — caveat!

The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1

» A flat prior seems armless. . .
» . .but it isn't!

» Imagine that p refers to a branching ratio:
fo(p) = 1 implies
P(p<0.1) = P(p>0.9)
1
P(p<001)[=P(p>099)] = 15P(p<0.1)

Really do you believe so?




Upper/lower probability bounds — caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f(p) =1
» A flat prior seems armless. . .
> .. but it isn't!
» Imagine that p refers to a branching ratio:
fo(p) = 1 implies

P(p<0.1) = P(p>0.9)
P(p < 0.01)[= P(p > 0.99)] = 1i0 P(p < 0.1)
Really do you believe so?

Exercise: try to plot f(p|x = 0,n=100) in log-log scale
> p=10"seq(-5,-1,1en=100) ;

> plot(p, (1-p)~100, ty=’1’, log=’xy’); grid()
(and think about it!)
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Very rare processes

Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule

fplx,n) o p*(1—p)"f(p)




Very rare processes

Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule

fplx,n) o p*(1—p)"f(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model 7,(p) with something
reasonable and do the math.
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Very rare processes

Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule

fplx,n) o p*(1—p)"f(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model 7,(p) with something
reasonable and do the math.

For example, you might thing that p ~ O (10_6).
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule
f(plx,n) oc p*(1—p)" " f(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model 7,(p) with something
reasonable and do the math.

For example, you might thing that p ~ O (10_6).
Then, e.g., (p) = 100 exp [—106 p]
with E(p) = 107° and o(p) = 10~°.
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule
f(plx,n) oc p*(1—p)" " f(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model 7,(p) with something
reasonable and do the math.

For example, you might thing that p ~ O (10_6).
Then, e.g., (p) = 100 exp [—106 p]
with E(p) = 107° and o(p) = 10~°.

» Do the math and calculate the posterior.
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes' rule
f(plx,n) oc p*(1—p)" " f(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model 7,(p) with something
reasonable and do the math.

For example, you might thing that p ~ O (10_6).
Then, e.g., f,(p) = 10° exp [—106 p]
with E(p) = 107° and o(p) = 10~°.

» Do the math and calculate the posterior.

> Anticipation of the result

P if the prior is not updated at all, or if it is not changed
significantly, than the experimental information is irrelevant.
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!




Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).

@© GdA, PhLab-04 04/05/21  28/80



Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).

Here is a very elegant one, particularly suitable useful to infer
Bernoulli's p.
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli's p.

» imagine that we could express fy(p) in the following form

fo(p) o p* (1 — p)®
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli's p.

» imagine that we could express fy(p) in the following form

fo(p) o p* (1 — p)®

» Then the inference becomes
f(plx,n) o p*(1—p)"* p°(1-p)°
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli's p.

» imagine that we could express fy(p) in the following form

fo(p) o p* (1 — p)®

» Then the inference becomes

f(plx,n) o p*(1—p)"-p?(1-p)®
o pa+x (1 _ p)b+(n—x)
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

— Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli's p.

» imagine that we could express fy(p) in the following form

fo(p) o p* (1 — p)®

» Then the inference becomes
f(plx,n) o p*(1—p)"* p°(1-p)°
o pa+x (1 _ p)b+(n—x)
x p(1-p)”
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Beta distribution
Indeed, such a pdf exists (a=r—1;, b=s—1).
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Beta distribution

Indeed, such a pdf exists (a=r—1;, b=s—1).
In general, given the generic uncertain number X,

r—17 _ ys—1 r,s>0
ﬂ(r,s)x (1-x) {0§X§1

f(x|Beta(r,s)) =
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Beta distribution

Indeed, such a pdf exists (a=r—1;, b=s—1).
In general, given the generic uncertain number X,

1 o . r,s>0
f(x\Beta(r,s)):ﬁ(r s)X 1(1—X) 1 {0<x<1

» The denominator is just for normalization, i.e.

B(r,s) = /1 x"71(1 = x)*"Ldx
0
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Beta distribution

Indeed, such a pdf exists (a=r—1;, b=s—1).
In general, given the generic uncertain number X,

1 o . r,s>0
f(x\Beta(r,s)):ﬁ(r s)X 1(1—X) 1 {0<x<1

» The denominator is just for normalization, i.e.

B(r,s) = /1 x"71(1 = x)*"Ldx
0

Indeed this integral defines the beta function, resulting in
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Beta distribution

Indeed, such a pdf exists (a=r—1;, b=s—1).
In general, given the generic uncertain number X,

1 o . r,s>0
f(x]Beta(r,s)):ﬁ(r s)X 1(1—X) 1 {0<x<1

» The denominator is just for normalization, i.e.

B(r,s) = /1 x"71(1 = x)*"Ldx
0

Indeed this integral defines the beta function, resulting in

Try e.g.
> p<-seq(0,1,by=0.01)
> plot(p, dbeta(p, 3, 5), ty=’1’, col=’blue’)
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Beta distribution

Some examples

A)r=s5=1,11e09 B) r=5=2345
f




Beta distribution

Some examples

E) s=08r=121523 F) s=2,r=0.806 04,02
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Beta distribution

Summaries

r
r+s

E(X) =

Var(X) = (r+s+1)(r+s)?"

Mode, unique if r > 1 and s > 1:

r—1
r+s—2
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A useful app

https://play.google.com/store/apps/details?id=com.mbognar.probdist

Probability Distributions

Matthew Bognar Istruzione whkody 567 2
g pecia
B Lappécompatiblle con alcuni dei tuci dispositivi

Installata

@ Provabisay pissibutions: i () Provatitity Dswibizions i (@ provabisay Disribtions
XeH10) K~Poisi
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https://play.google.com/store/apps/details?id=com.mbognar.probdist

A useful app

An example

L) Probability Distributions

X~Beta(a,B) p

a=5 B=3

=[0I Pixeo- |, 0.419%

1.5

f(x)

0.5

0.2 0.4 0.6 08

Help Formulas Moments
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p|n,x,Beta(r;,s;)) o [p*(1—p)"™] x [p7H(1 - p)oY]

x px+r, 1(1 _ p)n—x—i—s,'—l_
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p|n,x,Beta(r;,s;)) o [p*(1—p)"™] x [p7H(1 - p)oY]

x px+r, 1(1 _ p)n—x—i—s,'—l_

Simple updating rule:

rF = ri+Xx

sf = si+(n—x)
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p| n,x, Beta(r,-,s,) [ p)n—x] X [pri_l(l — p)si_l]
X+ri— 1(1 _ p)n—x—i—s;—l .

x p
Simple updating rule:
rr = ri+x
sf = si+(n—x)
Check the case of uniform prior (r; = s; = 1)
re x+1

E(X) = =
(X) re + s n+2
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p|n,x,Beta(ri,s;)) o [p*(1—p)" ] x [prf_l(l _ p)si—l]

x px+r, 1(1 _ p)n—x—i—s;—l_

Simple updating rule:

rF = ri+Xx

sf = si+(n—x)

Check the case of uniform prior (r; = s; = 1)

re x+1
E(X) = =
(%) rF+se n+2
1)(n— 1
Var(X) = r 5¢ = (x+1)(n = x +1)

(re +sr+ 1) (rr + s¢)? (n+3)(n+2)
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p|n,x,Beta(ri,s;)) o [p*(1—p)" ] x [prf_l(l _ p)si—l]

x px+r, 1(1 _ p)n—x—i—s;—l_

Simple updating rule:

rF = ri+Xx

sf = si+(n—x)

Check the case of uniform prior (r; = s; = 1)

re x+1
E(X) = =
(X) re + s n-+2
re sf (x+1)(n—x+1)
Var(X) = =
ar(X) (rf+se+1)(re+57)2  (n+3)(n+2)>2
-1
mode(X) = L R

re+sf— 2 n
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f(p|n,x,Beta(ri,s;)) o [p*(1—p)" ] x [prf_l(l _ p)si—l]

x px+r, 1(1 _ p)n—x—i—s;—l_

Simple updating rule:

rF = ri+Xx

sf = si+(n—x)

Check the case of uniform prior (r; = s; = 1)

re x+1
E(X) = =
(X) rr+sf n+2
re sf (x+1)(n—x+1)
Var(X) = =
ar(X) (rf+se+1)(re+57)2  (n+3)(n+2)>2
-1
mode(X) = S A Vv

re+sf— 2 n
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Conjugate priors

The Beta distribution is an example of conjugate prior:




Conjugate priors

The Beta distribution is an example of conjugate prior:
» a pdf such that prior and posterior belong to the same family;

P its parameters are updated by the the ‘likelihood'.
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Conjugate priors

The Beta distribution is an example of conjugate prior:
» a pdf such that prior and posterior belong to the same family;
P its parameters are updated by the the ‘likelihood'.

Note:

» not all conjugate priors are as flexible as the Beta.
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Conjugate priors

The Beta distribution is an example of conjugate prior:
» a pdf such that prior and posterior belong to the same family;
P its parameters are updated by the the ‘likelihood'.

Note:
» not all conjugate priors are as flexible as the Beta.

(In particular, the Gaussian is self-conjugate,
which is not so great. . .)
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More on priors
Data dominated inference
Let's look again at how the prior gets updated

f(plnx,ri,s) o [P (1—p)" ] x [P (1= p)" ]

o px+r,-71(1 . p)nfx+s,-71
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More on priors

Data dominated inference

Let's look again at how the prior gets updated
[px(l . p)nfx] % [pr,-fl(l _ p)s;fl]

f(p| n,x, riasf)

re

Sf

X

X

px+r,-71(1 o

ri + x
si+ (n—x)

p

)nfx+s,-71
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More on priors

Data dominated inference

Let's look again at how the prior gets updated

f(p| n,x, riasf)

X

[px(l . p)nfx] % [pr,-fl(l _ p)s;fl]

px+r,-71(1 . p)nfors,-fl
ri + x
si+ (n—x)
rFo + X
rF+se ritsi+n
reSse

(re +sr+ 1) (rr + s7)?
(ri+x)-(si+n—x)
(ri+si+n+1)(ri+ s+ n)?
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More on priors
Data dominated inference
Let's look again at how the prior gets updated

f(plnx,ri,s) o [P (1—p)" ] x [P (1= p)" ]

o px+r,-71(1 . p)nfors,-fl
rFo= ri+x
sf = s+ (n — X)
rf ri+x
E(p) = =
re + sf ri+si+n
reSse

(re +sp+ 1) (rr + sf)?
(ritx)-(si+n—x)
(ri4+si+n+1)(ri+ s +n)?

If x> riand (n—x) > s

rF = X
s~ (n—x)
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Predictive distribution

Predicting future nr. of successes and future frequences

P> Imagine we have have got 5 successes in 10 trials.
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P> Imagine we have have got 5 successes in 10 trials.

» Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, ..., 10 successes?




Predictive distribution

Predicting future nr. of successes and future frequences

P> Imagine we have have got 5 successes in 10 trials.

» Imagine that we want to make another 10 trials:

what is the probability to get 0, 1, ..., 10 successes?
» From the past data (and assuming a flat prior), we ‘know’
that p ~ 0.5.
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Predictive distribution

Predicting future nr. of successes and future frequences

P> Imagine we have have got 5 successes in 10 trials.

» Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, ..., 10 successes?

» From the past data (and assuming a flat prior), we ‘know’
that p ~ 0.5.

» If we were sure that p was 1/2, then we could simply use
Bio, 1/2-
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Predictive distribution

Predicting future nr. of successes and future frequences

P> Imagine we have have got 5 successes in 10 trials.

» Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, ..., 10 successes?

» From the past data (and assuming a flat prior), we ‘know’
that p ~ 0.5.

» If we were sure that p was 1/2, then we could simply use
Bio, 1/2-

> But we are not sure about it: we need to take into account all
possible values, each weighted by 7(p)
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Predictive distribution

Predicting future nr. of successes and future frequences

v v
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Predictive distribution

Predicting future nr. of successes and future frequences

v v

Vv
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Predictive distribution

Predicting future nr. of successes and future frequences

v v

Vv

> We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f(p)

= [y f(x|p)f(p

> More precisely,

1
f(x1| n1, no, xo) =/ f(x1|n1,p) f(p|xo,n0)dp
0

>X1—>f1
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Predictive distribution

Predicting future nr. of successes and future frequences

v v

Vv

> We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f(p)

> = Jof(x|p)f(p
> More precisely,
1
f(x1|n1,no,x0) = / f(x1|n1,p)f(p|x0,no)dp
0
» X; — fi (Predicting a future frequency from a past

frequency)




Predictive distribution

Some examples
f(Xl | np, Xp, N1 = 10) in %

X, X {xozl {xo:10 {xo:100 {x0:1000

m ng =2 ng =20 no = 200 ng = 2000
0 0 3.85 0.42 0.12 0.10
1 01 6.99 2.29 1.11 0.99
2 02 9.44 6.51 4.67 4.42
3 03 11.19 12.54 11.88 11.74
4 0.4 12.24 18.07 20.21 20.48
5 05 12.59 20.33 24.02 24.55
6 0.6 12.24 18.07 20.21 20.48
7 07 11.19 12.54 11.88 11.74
8 0.8 9.44 6.51 4.67 4.42
9 09 6.99 2.29 1.11 0.99
10 1 3.84 0.42 0.12 0.10
E(X1) 5 5 5 5
o[Xi] 2.64 1.87 1.62 1.58
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Joint inference and prediction

v




Joint inference and prediction

v

v

In reality the general solution starts from

f(no, p, N1, x0,x1)




Joint inference and prediction

v

v

In reality the general solution starts from
f(no, p, M, xo0, x1)
conditioning on what it is ‘known' (or ‘assumed’):

f(n07 P, nl)X07X1)
f(no, x0, n)

f(p, x1 | no,x0, n) =
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Joint inference and prediction

v

v

In reality the general solution starts from
f(nOa p, N, Xo, Xl)
conditioning on what it is ‘known' (or ‘assumed’):

f(n07 P, nl)X())Xl)
f(no, x0, n)

f(P7 X1 \ No, Xo, nl) =

= p and x; are correlated!
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Joint inference and prediction

v

v

In reality the general solution starts from
f(nOa p, N, Xo, Xl)
conditioning on what it is ‘known' (or ‘assumed’):

f(n07 P, nl)X())Xl)
f(no, x0, n)

f(P7 X1 \ No, Xo, nl) =

= p and x; are correlated!

p(p,x1) >0
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Joint inference and prediction

Siete

v

Let's do the math.
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» Three observed variables




Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value)
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value): p and x;.
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value): p and x;.
» f(ng,xo,n1) is @ number, given the model.
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value): p and x;.
» f(ng,xo,n1) is @ number, given the model.

It might be difficult to calculate, but it is a number.

f(p,x1, no, n1,x0)
f(no, x0, )

f(p,x1|no,x0,m) =
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value): p and x;.
» f(ng,xo,n1) is @ number, given the model.

It might be difficult to calculate, but it is a number.

f(p,x1, no, n1,x0)

f(no, x0, M)
X f(P,Xl,no,nl,XO)

f(p,x1|no,x0,m) =
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Joint inference and prediction

D D
Let's do the math.

» Three observed variables (no uncertainty): ng, xo and nj.
» Two unobserved variables (uncertain value): p and x;.
» f(ng,xo,n1) is @ number, given the model.

It might be difficult to calculate, but it is a number.

f(p,x1, no, n1,x0)

f(no, x0, M)
X f(P,Xl,no,nl,XO)

f(p,x1|no,x0,m) =

f(p,x1|no,x0,n) = f(p,x1,ng,n1,x0)

f(): unnormalized pdf.
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Joint inference and prediction
%%
D G

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):

f(p,x1|no,x0.m) o< f(xo|no,p)-f(xa|p,n)-fo(p)




Joint inference and prediction
%%
D G

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):

f(p,x1|no,x0.m) o< f(xo|no,p)-f(xa|p,n)-fo(p)
pxl(]_ _ p)nl—Xl

X0 _ no—xo ,
x P (1 P) (nl—Xl)!Xl!

-fo(p)
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Joint inference and prediction
s
GO GO
Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):
f(p,x1|no,x0.m) o< f(xo|no,p)-f(xa|p,n)-fo(p)

POl pymo . =P

(n1 — Xl)! X1! . fb(p)

pXo+X1(1 _ p)no+n1*X07X1

F(p, x| no,x0,m) = (m = 1) x] ~fo(p)
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Joint inference and prediction
s
GO GO
Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):
f(p,x1|no,x0.m) o< f(xo|no,p)-f(xa|p,n)-fo(p)

POl pymo . =P

(n1 — Xl)! X1! . fb(p)

pXo+X1(1 _ p)no+n1*X07X1

F(p,x1|no,x0, m) = (m = x1) Dl ~fo(p)

Problem almost solved
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Joint inference and prediction
R
D G

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):

f(p,x1|no,xo,n1) o< f(xo|no,p)-f(xt|p,ni)-fo(p)

POl pymo . =P

(n1 — Xl)! X1! . fb(p)

pXo+X1(1 _ p)no+n1*X07X1

F(p,x1|no,x0, m) = (m = x1) Dl ~fo(p)

Problem almost solved

» Possibly calculate the normalization, then all moments
and probability intervals of interest.
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Joint inference and prediction
R
D G

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):

f(p,x1|no,xo,n1) o< f(xo|no,p)-f(xt|p,ni)-fo(p)

POl pymo . =P

(n1 — Xl)! X1! . fb(p)

pXo+X1(1 _ p)no+n1*X07X1

F(p,x1|no,x0, m) = (m = x1) Dl ~fo(p)

Problem almost solved

» Possibly calculate the normalization, then all moments
and probability intervals of interest.
» Do it numerically,
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Joint inference and prediction
R
D G

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x):

f(p,x1|no,xo,n1) o< f(xo|no,p)-f(xt|p,ni)-fo(p)
no—xo | pXI(l — p)nl_x1

(n1 — Xl)! X1! . fb(p)

x p1l-p)
pXo+X1(1 _ p)no+n1*X07X1

F(p,x1|no,x0, m) = (m = x1) Dl ~fo(p)

Problem almost solved
» Possibly calculate the normalization, then all moments
and probability intervals of interest.
» Do it numerically,
» or by by sampling.

@© GdA, PhLab-04 04/05/21  43/80



Joint inference and prediction

v

v

= sample f(p, x1 | no, xo, m)




Joint inference and prediction

v

v

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques




Joint inference and prediction
R
D> D

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques

= Markov Chain Monte Carlo (MCMC)




Joint inference and prediction
R
R

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)
= JAGS does it for us
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Joint inference and prediction
R
R

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)

= JAGS does it for us

» by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf's involved allow it;
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Joint inference and prediction
R
R

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)

= JAGS does it for us

» by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf's involved allow it;

> by Metropolis
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Joint inference and prediction
R
R

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)

= JAGS does it for us

» by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf's involved allow it;

» by Metropolis (“when the going gets tough,
the tough get going” — J. Belushi)
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Joint inference and prediction
R
R

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)

= JAGS does it for us

» by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf's involved allow it;

» by Metropolis (“when the going gets tough,
the tough get going” — J. Belushi)

JAGS called from R using the package rjags.
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Joint inference and prediction
R
D> D

= sample f(p, x1 | no, xo, n1) using Monte Carlo techniques
= Markov Chain Monte Carlo (MCMC)

= JAGS does it for us

» by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf's involved allow it;

» by Metropolis (“when the going gets tough,
the tough get going” — J. Belushi)

JAGS called from R using the package rjags.

(No details on MCMC provided — see references on the web site)
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Graphical models: some terminology

v

» nodes (observed/unobserved);
» child/childred;
> parent(s).
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Graphical models: some terminology

aVeve

<>

» nodes (observed/unobserved);

» child/childred;

> parent(s).

> A node without parents needs a prior
(node p in this case)
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Joint inference and prediction in JAGS

Model

modelq{

x0 ~
~ dbin(p, nl);
~ dbeta(1l, 1);

x1
p

v

dbin(p, no0);

piste
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Joint inference and prediction in JAGS
RR >
>

Then the model has to be in a file.




Joint inference and prediction in JAGS

v %

Then the model has to be in a file.
For such a small model we can write it directly from R
on a temporary file:

v

model = "tmp_model.bug"
write ("
modelq{
x0 ~ dbin(p, n0);
x1 7 dbin(p, nl);
p ~ dbeta(l, 1);
}
", model)
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Use of JAGS from R via rjags

Second part of the R script (= inf_p_pred.R)
library(rjags)
data = list(n0=20, x0=10, n1=10)

jm <- jags.model(model, data)
chain <- coda.samples(jm, c("p", "x1"), n.iter=10000)

plot(chain)
print (summary(chain))
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Use of JAGS from R via rjags
(n0 =20, x0 =10, nl =10)

Trace of p Denslty of p
o |
< |
T T T T T T T T T
2000 4000 5000 8000 10000 02 04 06 08
Hterations N=10000 Bandwidth = 0.01764
Trace of x1 Denslty of x1
29 &
°
wie]

T T T T T T T T T T T T T T 1
2000 4000 6000 8000 10000 4 0 1 2 3 4 5 & 7 8 9 10

Iterations
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Use of JAGS from R via rjags
(n0 =20, x0 =10, nl =10)

Trace of p Denslty of p

06

04

T T T T T T T T T
2000 4000 6000 8000 10000 02 0.4 06 08

Iterations N'=10000 Bandwidth = 0.01764
Trace of x1 Density of x1
2 ]
e
<
T T T T T S T T T T T T T T T T 1
2000 4000 6000 8000 10000 4 0 1 2 3 4 5 & 7 8 9 10

Iterations

p = 0.498 £ 0.105; x; = 4.98 £ 1.86 (10000 samples).
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Inference and prediction with JAGS /rjags

Comparison with exact result of f(xi | no, xo, 1)
f(Xl | no, Xp, N1 = 10) n %

X, X {xozl {x0:10 {xo:100 {x0:1000

m ng =2 ng =20 no = 200 ng = 2000
0 0 3.85 0.42 0.12 0.10
1 0.1 6.99 2.29 1.11 0.99
2 02 9.44 6.51 4.67 4.42
3 03 11.19 12.54 11.88 11.74
4 0.4 12.24 18.07 20.21 20.48
5 05 12.59 20.33 24.02 24.55
6 0.6 12.24 18.07 20.21 20.48
7 07 11.19 12.54 11.88 11.74
8 0.8 9.44 6.51 4.67 4.42
9 09 6.99 2.29 1.11 0.99
10 1 3.84 0.42 0.12 0.10
E(X1) 5 5 5 5
o[Xi] 2.64 1.87 1.62 1.58
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Inference and prediction with JAGS /rjags

Scatter plot of sampled f(p, xi | no, xo, N1)

p <- as.vector(chain[[111[,11)
x1 <- as.vector(chain[[1]][,2])
plot(x1l, p, col=’blue’,
main=sprintf ("cor(p,x1) = %.2f", cor(p,x1)))
print( table(x1)/10000 )




Inference and prediction with JAGS /rjags

Scatter plot of sampled f(p, xi | no, xo, N1)

p <- as.vector(chain[[1]]1[,1])
x1 <- as.vector(chain[[1]][,2])
plot(x1l, p, col=’blue’,
main=sprintf ("cor(p,x1) = %.2f", cor(p,x1)))
print( table(x1)/10000 )

cor(p,x1) = 0.56
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Inference and prediction with JAGS /rjags

Scatter plot of sampled f(p, xi | no, xo, N1)

p <- as.vector(chain[[1]]1[,1])
x1 <- as.vector(chain[[1]][,2])
plot(x1l, p, col=’blue’,
main=sprintf ("cor(p,x1) = %.2f", cor(p,x1)))
print( table(x1)/10000 )

cor(p,x1) = 0.56
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(The last command, print(...), produces the relative frequencies
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n independent Bernoulli processes

Inferring n

v

Think at a detector having a well known efficiency (e = p):
» we have recorded x ‘signals’;
» how many particles impinged the detector? —s f(n|x,p)?

Not to be confused with a different problem:
P a Poisson process has produced x in the measuring time T;
» what is A of the related Poisson distribution?
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n independent Bernoulli processes

Inferring n

v

Think at a detector having a well known efficiency (e = p):
» we have recorded x ‘signals’;
» how many particles impinged the detector? —s f(n|x,p)?

Not to be confused with a different problem:
P a Poisson process has produced x in the measuring time T;
» what is \ of the related Poisson distribution? —s f(\|x)?
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n independent Bernoulli processes

Inferring n

v

Think at a detector having a well known efficiency (e = p):
» we have recorded x ‘signals’;
» how many particles impinged the detector? —s f(n|x,p)?

Not to be confused with a different problem:
P a Poisson process has produced x in the measuring time T;

» what is \ of the related Poisson distribution? —s f(\|x)?
[or, more precisely, what is the rate r? — f(r|x, T)? ]
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n independent Bernoulli processes
Extending the model
Our problem (but in Physics it is often not so simple)
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n independent Bernoulli processes
Extending the model
Our problem (but in Physics it is often not so simple)

v

&

Vv

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)
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n independent Bernoulli processes
Extending the model
Our problem (but in Physics it is often not so simple)

v

&

Vv

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)
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n independent Bernoulli processes
Extending the model
Our problem (but in Physics it is often not so simple)

v

&

Vv

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

KRR
D

But what is n?
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Extending the model

In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning'.
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Extending the model

In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning'.
> When we say “we are uncertain on numbers”, we do not mean
that we are uncertain on the numbers we ‘see’ in our detector,
but to ‘other numbers’.
> Typically n +— A
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning'.
> When we say “we are uncertain on numbers”, we do not mean
that we are uncertain on the numbers we ‘see’ in our detector,
but to ‘other numbers’.
> Typically n +— A

Assuming for a while p well known and focusing on ‘n’:
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In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning'.
> When we say “we are uncertain on numbers”, we do not mean
that we are uncertain on the numbers we ‘see’ in our detector,
but to ‘other numbers’.
> Typically n +— A

Assuming for a while p well known and focusing on ‘n’:

v

But, as we have seen studying the Poisson process,

A is not really physical —




Extending the model
A=r-T:
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(Dashed arrows used in literature for deterministic links)




Extending the model
A=r-T:

v

(Dashed arrows used in literature for deterministic links)
In JAGS, e.g., lambda <- r * T;




Extending the model

Remembering that p was got from a measurement:

N - \/
\\ s
.
N -
N
N .

Ty

Vv Vv

N

-
A




Extending the model

The rate r gets contributions from signal and background
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Extending the model
But, since r = rg + rg,
we need some independent knowledge of the background
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Extending the model
But, since r = rg + rg,
we need some independent knowledge of the background
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(To and T assumed to be measured with sufficient accuracy)
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Extending the model
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Extending the model

(*) Assuming unity efficiency
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Inferring n ‘assuming’ p and x
Back to our initial problem
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Inferring n ‘assuming’ p and x
Back to our initial problem

v

V

f(nlp.x) oc f(x|n,p)-fo(n)
< f(x|n,p) [ uniform prior]
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Inferring n ‘assuming’ p and x
Back to our initial problem

v
\/
f(n|p,x) o f(x|n,p)-fo(n)
< f(x|n,p) [ uniform prior]
[
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Inferring n ‘assuming’ p and x
Back to our initial problem

v

V

f(nlp.x) oc f(x|n,p)-fo(n)
< f(x|n,p) [ uniform prior]
n!
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Inferring n ‘assuming’ p and x
Back to our initial problem

v
\/
f(n|p,x) o f(x|n,p)-fo(n)
< f(x|n,p) [ uniform prior]
n!
> x!(n—x)!px'(lip)n_x
n! X_(]'_p)n
X P A=)
x (1—p)"

(n—x)!




Inferring n ‘assuming’ p and x
Example in R with p = 0.75 and x = 10

n = x:n.max
fn = factorial(n)/factorial(n-x)*(1-p) n
fn/sum(fn)

H
=}
1]

sum (fn*n)
sum(fn*n~2)
sqrt(media.n2 - media.n"2)

media.n
media.n2

sigma.n

barplot(fn, names=n, col=’cyan’, xlab=’n’)
text(20,0.15, sprintf("mean = %.2f", media.n), cex=2)
text(20,0.12, sprintf("sigma = 7%.2f", sigma.n),cex=2)




Inferring n ‘assuming’ p and x

f(n|x =10,p = 0.75)

3
8 J I I

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.15
|

mean = 13.67

sigma = 2.21

0.10
1

n
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Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);
n ~ dnegbin(0.001, 1) I(nmin,);
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Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks
P> dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;
» being p = 0.001, it has expected value 999
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Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks
P> dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;
P> being p = 0.001, it has expected value 999
(% — 1, because it starts from 0)
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Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks
P> dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;
» being p = 0.001, it has expected value 999
(X — 1, because it starts from 0)
and standard deviation 1000
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Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks
» dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;
» being p = 0.001, it has expected value 999
(% — 1, because it starts from 0)
and standard deviation 1000
= In practice, it is uniform in the region of interest
» I(nmin,) means that n cannot be smaller than nmin
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Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks

P> dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;

P> being p = 0.001, it has expected value 999
(% — 1, because it starts from 0)
and standard deviation 1000
= In practice, it is uniform in the region of interest

» I(nmin,) means that n cannot be smaller than nmin
(nmin is indeed equal to the observed x, for obvious reasons,
but JAGS needs a separate constant)




Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x 7 dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);
}

Remarks
P> dnegbin(0.001, 1) is a ‘negative binomial’
in practice a geometric distribution ‘from 0’;
P> being p = 0.001, it has expected value 999
(% — 1, because it starts from 0)
and standard deviation 1000
= In practice, it is uniform in the region of interest
» I(nmin,) means that n cannot be smaller than nmin
(nmin is indeed equal to the observed x, for obvious reasons,
but JAGS needs a separate constant)
The remaining R code is left as exercise
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Inferring Poisson’s A

> set up the problem;




Inferring Poisson's A

> set up the problem;

» solution for uniform prior;




Inferring Poisson's A

> set up the problem;
» solution for uniform prior;

» the case of no events observed;
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Inferring Poisson's A

> set up the problem;
» solution for uniform prior;
» the case of no events observed;

P prior conjugate;
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Inferring Poisson's A

set up the problem;
solution for uniform prior;
the case of no events observed;

prior conjugate;

vVvyvyyvy

predictive distribution;
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Inferring Poisson’s A

set up the problem;

solution for uniform prior;

the case of no events observed;
prior conjugate;

predictive distribution;

vVvvyVvVvyy

from A to r (not covered, since it is straightforward,;
but remember that the ‘physical quantity’ is r)




Inferring Poisson's A

e A
fo(A
fF(A|x,P) = oY)

Je e f(A)d




Inferring Poisson's A

e A
Aet? £\
F(A[x,P) = OOAXX; X Q2
fo ()\)dA

Assuming f,(\) constant up to a certain A, > x and making the
integral by parts we obtain

f(N|x,P) =

FO\[x,P) = 1—¢e* <i;\7>
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Inferring Poisson's A

X e—>\
A " f(A
A xP) = i o)
Joo e f(A)dA
Assuming f,(\) constant up to a certain )\max > x and making the
integral by parts we obtain

A< e A
% P) = ==
F(MNx,P) = 1—e? iﬁ
’ B — !
Summaries
E(\) = x+1,
Var(A\) = x+1,
Am = X
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Some examples of f(\)

1

0o 5 10 . s o
For ‘large’ x f(\) it becomes Gaussian with expected value x and

standard deviation /x.

The difference between the most probable A\ and its expected
value for small x is due to the asymmetry of f(\).
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Inferring A from x =0
(From a flat prior!)

£(h)




Inferring A from x =0
(From a flat prior!)

£(h)

1
fOA|x=0,P) = e
FM[x=0,P) = 1—e*
Upper probabilistic limit (e.g. at 95% probability):
PA<A,|x=0)=F(\,|]x=0) = 0.95
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Inferring A from x =0
(From a flat prior!)

£(h)

1
fOA|x=0,P) = e
FM[x=0,P) = 1—e*
Upper probabilistic limit (e.g. at 95% probability):
PA<A,|x=0)=F(\,|]x=0) = 0.95
1—F(\y|x=0)=e™ = 005
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Inferring A from x =0
(From a flat prior!)

£(h)

1
f(A|x=0,P) = e
FA\|x=0,P) = 1—e*
Upper probabilistic limit (e.g. at 95% probability):
PA<A,|x=0)=F(\,|]x=0) = 0.95
1-F(\,|x=0)=e?™ = 0.05
Ay = 3 at 95% probability .

@© GdA, PhLab-04 04/05/21  68/80



Inferring A from x =0
(From a flat prior!)

£(h)

IS

fOA|x=0,P) = e
FM[x=0,P) = 1—e*
Upper probabilistic limit (e.g. at 95% probability):
PA<A,|x=0)=F(\,|]x=0) = 0.95
1-F(\,|x=0)=e?™ = 0.05
Ay = 3 at 95% probability .
But not because f(x = 0|\ =3) = e~3 = 0.05/
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Inferring A from x =0
(From a flat prior!)

£(h)

IS

fOA|x=0,P) = e
FM[x=0,P) = 1—e*
Upper probabilistic limit (e.g. at 95% probability):
PA<A,|x=0)=F(\,|]x=0) = 0.95
1-F(\,|x=0)=e?™ = 0.05
Ay = 3 at 95% probability .
But not because f(x = 0|\ =3) = e~3 = 0.05/

In this case it works just by chance




P(A|B) < P(B|A)
Do you remember? (From first lecture)

In general P(A|B) # P(B|A)
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P(A|B) < P(B|A)
Do you remember? (From first lecture)
In general P(A|B) # P(B|A)
» P(Positive | HIV)) # P(HIV | Positive)

» P(Win|Play) # P(Play | Win)  [Lotto]
» P(Pregnant|Woman) # P(Woman | Pregnant)
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P(A|B) < P(B|A)
Do you remember? (From first lecture)
In general P(A|B) # P(B|A)
» P(Positive | HIV)) # P(HIV | Positive)

» P(Win|Play) # P(Play | Win)  [Lotto]
» P(Pregnant|Woman) # P(Woman | Pregnant)

Everyone was laughing, but this is more or less the ‘logic’ behind
frequentistic CL upper/lower bounds
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P(A|B) < P(B|A)
Do you remember? (From first lecture)

In general P(A|B) # P(B|A)

» P(Positive | HIV') # P(HIV | Positive)
» P(Win|Play) # P(Play | Win)  [Lotto]
» P(Pregnant|Woman) # P(Woman | Pregnant)

Everyone was laughing, but this is more or less the ‘logic’ behind
frequentistic CL upper/lower bounds

Very little to laugh...

@

®© GdA, PhLab-04 04/05/21  69/80



Inferring Poisson’s A

Conjugate prior

F(A|x) o Xe - f(N)
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Inferring Poisson's A

Conjugate prior

F(A|x) o Xe - f(N)
o N\ ef)\ L)\ efb)\

o )\X+a ef(l+b)/\

Does such a probability function ‘exist’?




Inferring Poisson's A

Conjugate prior

F(A|x) o Xe - f(N)
o N\ ef)\ L)\ efb)\

o )\X+a ef(l+b)/\

Does such a probability function ‘exist’?

= Gamma distribution




Gamma distribution
X ~ Gamma(c, r): )
f(x| Gamma(c,r)) = r xC—lg=rx { r,c>0 ,

r(c)

where o
Mc)= / x¢"le™dx
0
(for n integer, ['(n+ 1) = n!).
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Gamma distribution
X ~ Gamma(c, r): )
f(x| Gamma(c,r)) = r xC—lg=rx { r,c>0 ,

r(c)

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
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Gamma distribution
X ~ Gamma(c, r):

_ © c—1_—rx r,c > 0
f(x|Gamma(c,r)) = ——x""e { x>0

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
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Gamma distribution
X ~ Gamma(c, r):

_ © c—1_—rx r,c > 0
f(x|Gamma(c,r)) = ——x""e { x>0

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
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Gamma distribution
X ~ Gamma(c, r): .
f(x| Gamma(c,r)) = x¢lemrx { r,c>0

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
» Finally, the y? distribution is just a particular Gamma:

f(x\xl%) = f(x|Gamma(v/2, 1/2))
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Gamma distribution
X ~ Gamma(c, r): .
f(x| Gamma(c,r)) = x¢lemrx { r,c>0

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
» Finally, the y? distribution is just a particular Gamma:

f(x|x2) = F(x|Gamma(v/2, 1/2))
» The Gamma is a key distribution!
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Gamma distribution
X ~ Gamma(c, r): )
f(X | Gamma(c7 r)) = Xc_le_rx { r7 c> O ,

where o
F(c):/ x¢"le™dx
0

(for n integer, ['(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
» Finally, the y? distribution is just a particular Gamma:
f(x|x2) = f(x|Gamma(r/2, 1/2))
» The Gamma is a key distribution!
The Erlang distribution is important to get a physical intuition
of the properties of Gamma and then of the x?!
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Gamma distribution

Some examples

A)c=1,2 3,5 r=0.5.

r: rate (if the variable is a time, then r is Poisson rate).
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Gamma distribution

Some examples

B)c=122305r=1.

f
1

r: rate (rate increases — distributions squized)
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Gamma distribution

Some examples

C)c=1235r=2.

r: rate (rate increases — distributions squized)
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Gamma (and y?) distribution
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Gamma (and y?) distribution

Summaries

c

c E(X

Var(X) = 2= (r)
0 ifc<1
modeX) = { &1 10T

Therefore, for the x2 (— c =v/2, r =1/2)

E(X*) = v

Var(x ) = 2v
mode(x { iy <2
-2 ifvr>2




Distributions derived from the Bernoulli process

Geometric Binomial

(trial of (# of successes
1st success) in ind. p trials)
Pas@l
(trial of
k-th schess)

‘ Erlang—Gamma ‘ Poisson

(time k-th count)

‘ Exponential ‘

(time 1st cowat Counts in T)
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Distributions derived from the Bernoulli process

Binomial

Geometric
(trial of
1st success)

[ Pascal|

(trial of

k-th s

ccess)

(# of s

in ind.

Iccesses
n trials)

‘ Exponential ‘

‘ ErIang—>Gamma‘

(time 1st count)

(time k-th count)

Poisson

(# counts in T)
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Distributions derived from the Bernoulli process

(tric
1st su

Geometric

| of
ccess)

Expon;nt@ [

(time 1st count)

| —il
Gaussian

Bernoulli

(# of successes
inind. n trials)

Pascal |
| Pascal

{tridl of

k-th success)

. , — \
Erlang—Gamma | Poisson

(time k-th count) (# counts in T)

V2
A
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Inferring the Poisson’s A

Use of gamma conjugate prior

>

f(X| x, Gamma(c;, r;)) o [)‘Xeiw x [Aqileinﬂ

o AXJrc;flef(r,-Jrl))\

)

where ¢; and r; are the initial parameters of the gamma
distribution.

®© GdA, PhLab-04 04/05/21  77/80



Inferring the Poisson’s A

Use of gamma conjugate prior
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o Ax+c;flef(r,-+1))\

)

where ¢; and r; are the initial parameters of the gamma
distribution.

» Updating rule
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rr = ri+1
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Use of gamma conjugate prior
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o Ax+c;flef(r,-+1))\

b
where ¢; and r; are the initial parameters of the gamma
distribution.

» Updating rule
cFr = Ci+x

rr = ri+1

» A “flat conjugate” prior (not just academic!):
— exponential with very large 7 (or vanishing r)
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Inferring the Poisson’s A

Use of gamma conjugate prior

>

f(X| x, Gamma(c;, r;)) o [)‘Xeiw x [Aqileinﬂ

o Ax+c;flef(r,-+1))\ ,

where ¢; and r; are the initial parameters of the gamma
distribution.

» Updating rule
cFr = Ci+x

rr = ri+1

» A “flat conjugate” prior (not just academic!):
— exponential with very large 7 (or vanishing r)
> c=1,r—0

f(\|x,Gamma(c; =1,r; = 0)) o< Ne
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Predictive distribution

We have seen how to learn about A given the observed x
(hereafter x,)
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Predictive distribution
We have seen how to learn about A given the observed x

(hereafter x,)
What shall we get in a future measurement?

(assuming same r and T)
o) = [ Flxr[0): F 3p) A
0
Left as exercise, e.g. numerically or with JAGS
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We have seen how to learn about A given the observed x
(hereafter x,)
What shall we get in a future measurement?
(assuming same r and T)

Flxr | xp) = /0 x| A) - (A xp) dA

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour

(e.g. x, =100)
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» if we were sure that A\ was 100, then x, = 100 = 10.

» but we have to ‘convolute’ our uncertainty concerning A
— uncertainty about x¢ has to increase;

» by how much? — Left as exercise
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Example with JAGS

# inf_lambda_pred.bug
model {
X ~ dpois(lambda) ;
lambda ~ dexp(0.00001)
Y ~ dpois(lambda);

# inf_lambda_pred.R

library(rjags)

modello = "inf_lambda_pred.bug" # file con il modello
dati <- NULL # oggetto con i dati

dati$X <- 100

jm <- jags.model(modello, dati) # definisce il modello
update (jm, 100) # burn in

catena <- coda.samples(jm, c("lambda","Y"), n.iter=10000)
print (summary(catena))

plot(catena)
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