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Back to the ‘binomial’ model
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Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)
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Problem almost solved

◮ Possibly calculate the normalization, then all moments
and probability intervals of interest.
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(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)
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· f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

(n1 − x1)! x1!
· f0(p)

Problem almost solved

◮ Possibly calculate the normalization, then all moments
and probability intervals of interest.

◮ Do it numerically,
◮ or by by sampling.

© GdA, PhLab-05 11/05/21 3/51



Details of the numeric solution (→ inf p pred numeric.R)

# prior on p (unnormalized beta)

uf0p <- function(p) {

r0 = 1

s0 = 1

ifelse(pp >= 0 && pp <= 1, p^(r0-1)*(1-p)^(s0-1), 0)

}

# unnormalized distribution

uf <- function(p, x1, n0, x0, n1) {

if(p<0 || p>1) return(0)

if(x1 <0 || x1>n1) return(0)

return( p^(x0+x1)*(1-p)^(n0+n1-x0-x1) /

(factorial(x1)*factorial(n1-x1)) * uf0p(p) )

}

# normalized distribution (after ’norm’ has been evaluated)

f <- function(p, x1, n0, x0, n1) {

uf(p, x1, n0, x0, n1)/norm} © GdA, PhLab-05 11/05/21 4/51



Details of the numeric solution – cont.d

# grid in the (p,x1) space

x1 <- 0:n1

N.x1 = n1+1

N.p <- 50 # nr of intervals in p

Dp = 1/N.p

p <- seq(Dp/2, 1-Dp/2, Dp) # centers of intervals!

# normalization

norm = 0

for (i in 1:N.p) {

for (j in 1:N.x1) {

norm <- norm + uf(p[i], x1[j], n0, x0, n1)

}

}
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Details of the numeric solution – cont.d

# marginal of p (discretized)

f.p <- rep(0, N.p)

for (i in 1:N.p) {

for (j in 1:N.x1) {

f.p[i] <- f.p[i] + f(p[i], x1[j], n0, x0, n1)

}

}

# marginal of x1

f.x1 <- rep(0,N.x1)

for (j in 1:N.x1) {

for (i in 1:N.p) {

f.x1[j] <- f.x1[j] + f(p[i], x1[j], n0, x0, n1)

}

}
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Details of the numeric solution – cont.d

# moments of p

E.p <- sum(p*f.p)

sigma.p <- sqrt( sum(p^2*f.p) - E.p^2 )

cat(sprintf("\n p = %.3f +. %.3f\n", E.p, sigma.p))

# moments of x1

E.x1 <- sum(x1*f.x1)

sigma.x1 <- sqrt( sum(x1^2*f.x1) - E.x1^2 )

cat(sprintf("\n x1 = %.3f +. %.3f\n", E.x1, sigma.x1))

# covariance and correlation coefficient

E.p.times.x1 <- 0 # 1. expected value of the product

for (i in 1:N.p) {

for (j in 1:N.x1) {

E.p.times.x1 <- E.p.times.x1 + p[i] * x1[j] *

f(p[i], x1[j], n0, x0, n1)

}
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Details of the numeric solution – cont.d

# covariance and correlation coefficient

# 1. expected value of the product

E.p.times.x1 <- 0

for (i in 1:N.p) {

for (j in 1:N.x1) {

E.p.times.x1 <- E.p.times.x1 + p[i] * x1[j] *

f(p[i], x1[j], n0, x0, n1)

}

}

# 2. covariance

Cov <- E.p.times.x1 - E.p*E.x1

# 3. correlation coefficient

rho <- Cov / (sigma.p * sigma.x1)

cat(sprintf("\n rho(p,x1) = %.3f\n", rho))
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Metropolis algorithm for MCMC
A flash/practical introduction in 1D

Imagine we have a non trivial f (x), for a generic x ,
and we are interested in sampling it:
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Imagine we have a non trivial f (x), for a generic x ,
and we are interested in sampling it:
⇒ get a sample of x , such that their relative frequency
(under proper discretization) is proportional to f (x).
◮ if the distribution is ‘well known’, then we can just use a

function of a suitable scientific library,
e.g., in R, rnorm(), runif(), rbeta(), etc.

◮ if the cumulative distribution, F (x), can be analytically
inverted, then just use the method of inverting the cumulative
e.g. in R
tau=5; hist(-tau*log(runif(100000)), nc=50)

◮ if f (x) is defined in a limited region, the we can use the
simple hit/miss method.

Otherwise Markov Chain Monte Carlo, via a suitable algoritm

⇒ The Metropolis algorithm is one of the most powerful one.
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Metropolis algorithm for MCMC
A flash/practical introduction in 1D

Metropolis algorithm

[Note how we are using the variable t, instead of the usual i , to
order the steps, to remind of an evolution in time of system.]
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Metropolis algorithm

[Note how we are using the variable t, instead of the usual i , to
order the steps, to remind of an evolution in time of system.]
◮ Imagine that at a given ‘t − 1’ the system is in x (t−1):

◮ propose a new position x∗ chosen at random among the
possible states with a symmetric proposing function q(),
i.e. q(xi | xj) = q(xj | xi );
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sense x (t) = x (t−1)).
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Metropolis algorithm

[Note how we are using the variable t, instead of the usual i , to
order the steps, to remind of an evolution in time of system.]
◮ Imagine that at a given ‘t − 1’ the system is in x (t−1):

◮ propose a new position x∗ chosen at random among the
possible states with a symmetric proposing function q(),
i.e. q(xi | xj) = q(xj | xi );

◮ calculate the acceptance probability as

A = min

(

1,
f (x∗)

f (x (t−1))

)

◮ Move to x∗ with probability A, otherwise stay in x (t−1) (in the
sense x (t) = x (t−1)).

Mostly important: normalization irrelevant!

Technically, it can be proved that the algorithm has the desired

properties to produce a Markov Chain.
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Metropolis applied to unnormalized pdf’s
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Metropolis applied to unnormalized pdf’s
⇒ metropolis.R

prop <- function(x) {d=1; x + runif(1, -d, d)}

metropolis <- function(n, x0) {

x = rep(0,n)

x[1] = x0

for (i in 2:n) {

x.p <- prop(x[i-1])

A <- fun(x.p)/fun(x[i-1])

x[i] <- ifelse (runif(1) <= A, x.p, x[i-1])

}

return(x)

}
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Metropolis applied to unnormalized pdf’s
⇒ metropolis.R

prop <- function(x) {d=1; x + runif(1, -d, d)}

metropolis <- function(n, x0) {

x = rep(0,n)

x[1] = x0

for (i in 2:n) {

x.p <- prop(x[i-1])

A <- fun(x.p)/fun(x[i-1])

x[i] <- ifelse (runif(1) <= A, x.p, x[i-1])

}

return(x)

}

> n <- 10000

> x0 <- 0

> x <- metropolis(n, x0, fun, prop)

> hist(x, nc=100, col=’cyan’)
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Metropolis applied to unnormalized pdf’s
Uniform proposal with d = 1
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Metropolis applied to unnormalized pdf’s
Uniform proposal with d = 1

0 2000 4000 6000 8000 10000

−
2

0
2

4

Index

x

© GdA, PhLab-05 11/05/21 14/51



Metropolis applied to unnormalized pdf’s
Uniform proposal with d = 1
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Metropolis applied to unnormalized pdf’s
Uniform proposal with d = 0.1 and d = 10
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Understanding Metropolis

Proposed exercise Try to use Metropolis in order to make a
random walk inside a square, with uniform distribution
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Metropolis applied to our binomial problem (→ {p, x1})
⇒ inf p pred metropolis.R

#model parameters

n0 = 20; x0 = 10; n1 = 10

# Metropolis parameters

N = 10000

Dx = 2; Dp = 0.1

# unnormalized distr. (you might want to add a prior)

uf <- function(p, x1, n0, x0, n1) {

if(p<0 || p>1) return(0)

if(x1 <0 || x1>n1) return(0)

return( p^x0*(1-p)^(n0-x0) * p^x1*(1-p)^(n1-x1) /

(factorial(x1)*factorial(n1-x1)) )

}

# proposal functions

pr.p <- function(p.o, Dp) p.o + runif(1, -Dp, +Dp)

pr.x1 <- function(x1.o, Dx) x1.o + sample(-Dx:Dx)[1]
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Metropolis applied to our binomial problem (→ {p, x1})
# inits (just empty vectors)

p <- x1 <- numeric(N)

# initial p and x1 (not to confused with the prior on p!!)

p[1] = rbeta(1,1,1) # uniform (or anything you like...)

x1[1] = rbinom(1, n1, p[1])

# Metropolis

for (i in 2:N) {

p.p <- pr.p(p[i-1], Dp) # proposals

x1.p <- pr.x1(x1[i-1], Dx)

A <- min(1, uf(p.p, x1.p, n0, x0, n1) / # acceptance

uf(p[i-1], x1[i-1], n0, x0, n1) )

if ( runif(1) <= A ) {

p[i] <- p.p

x1[i] <- x1.p

} else {

p[i] <- p[i-1]

x1[i] <- x1[i-1]

}

}
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More on Poisson processes
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Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :
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Adding background – a practical introduction with Jags
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of events in the observation time T :
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λ = r T = rs T + rB T

X ∼ Pλ
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Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ

f (r | x , rB ,T ) ∝ f (x | r , rB ,T ) · f0(r)

© GdA, PhLab-05 11/05/21 20/51



Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ

f (r | x , rB ,T ) ∝ f (x | r , rB ,T ) · f0(r)

Uncertainty on rB?
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Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ

f (r | x , rB ,T ) ∝ f (x | r , rB ,T ) · f0(r)

Uncertainty on rB? Usual way: integrate over all possible
values

f (r | x ,T ) =

∫ ∞

0
f (r | x , rB ,T ) · f (rB) drB
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Signal and background

rs T rB T0

λs λB λB0

λ X0

X

⇒ inf r bck measured.R
⇒ inf r bck measured.bug
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rs T rB T0

λs λB λB0

λ X0

X

⇒ inf r bck measured.R
⇒ inf r bck measured.bug
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Signal + background

JAGS model (⇒ inf r bck measured.bug)

model {

X ~ dpois(lambda)

lambda <- ls + lB

ls <- r * T

r ~ dgamma(1, 0.00001) # gamma, but indeed dexp(0.00001)

lB <- rB * T

# experiment with background only

lB0 <- rB * TB

XB ~ dpois(lB0)

rB ~ dgamma(1, 0.00001) # vague prior also on the background

}

© GdA, PhLab-05 11/05/21 22/51



Signal + background
Stearing code (⇒ inf r bck measured.R)

model = "inf_r_bck_measured.bug" # model file

data <- NULL # R list containing data

data$X <- 100 # observed nr of counts from signal+background

data$T <- 10 # time of measurement signal+background

data$TB <- 4 # time of measurement of background alone

data$XB <- 20 # observed nr of counts from background alone

jm <- jags.model(model, data) # define the model

update(jm, 100) # "burn in": the chain runs but history

# not recorded -> just to get rid of initial

# position (exaggerated in this case!)

chain <- coda.samples(jm, c("r","rB"), n.iter=10000) # sampling

print(summary(chain))

plot(chain)
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Gaussian model
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x
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x

◮ In general f (x , µ, σ | I )
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x

◮ In general f (x , µ, σ | I )

◮ We start assuming σ well known, that we call here σe to
remember that it is the standard deviation which describes
statistical errors.
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x

◮ In general f (x , µ, σ | I )

◮ We start assuming σ well known, that we call here σe to
remember that it is the standard deviation which describes
statistical errors.

◮ And let us start from having observed the ‘first’ value x1
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x

◮ In general f (x , µ, σ | I )

◮ We start assuming σ well known, that we call here σe to
remember that it is the standard deviation which describes
statistical errors.

◮ And let us start from having observed the ‘first’ value x1
(remember that time order is not important;
what matters is the order in which the information is used)
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√

◮ Our task: f (µ | x1, σe)
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√

◮ Our task: f (µ | x1, σe)

◮ In general: f (µ | data, I )
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√

◮ Our task: f (µ | x1, σe)

◮ In general: f (µ | data, I )
‘data’ can be a set of observations
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Inferring µ of the normal distribution

µ σe

x1

√

√
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)

f (µ | x1) =
f (x1 |µ) · f0(µ)

f (x1)
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)

f (µ | x1) =
f (x1 |µ) · f0(µ)

f (x1)

=
f (x1 |µ) · f0(µ)

∫ +∞
−∞ f (x1 |µ) · f0(µ) dµ
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1: → 1
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1: → 1

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1: → 1

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Note the swap of µ and x1 at the exponent,
to emphasize that they have now different roles:
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
− (x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
− (x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1: → 1

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Note the swap of µ and x1 at the exponent,
to emphasize that they have now different roles:

◮ µ is the variable;

◮ x1 is a parameter
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe

All probability intervals calculated from the pdf.
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe

All probability intervals calculated from the pdf.
⇒ really probability intervals, and not ‘confidence intervals’

© GdA, PhLab-05 11/05/21 29/51



Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
− (µ−x1)

2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe

All probability intervals calculated from the pdf.
⇒ really probability intervals, and not ‘confidence intervals’(∗)
(∗)The expressions “confidence interval” and “confidence limits” are jeopardized

having often little to do with ‘confidence’ – sic!
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Role of the prior

Yes, but the prior?

Think about it. . .

Next time =⇒
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Inference and prediction related to Gaussian errors

We have seen the simple case

(x1, σe) −→ f (µ | x1, σe , f0(µ) = k)
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Inference and prediction related to Gaussian errors
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(x1, σe) −→ f (µ | x1, σe , f0(µ) = k)

Further (important) cases:

◮ several measurements, each with precisely known σi ;
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◮ taking into account of priors;

◮ getting µ and σ (‘σe ’) from a sample
(‘small samples’ next lecture);
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We have seen the simple case

(x1, σe) −→ f (µ | x1, σe , f0(µ) = k)

Further (important) cases:

◮ several measurements, each with precisely known σi ;

◮ taking into account of priors;

◮ getting µ and σ (‘σe ’) from a sample
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◮ predicting a new (‘future’) value of x ;
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Inference and prediction related to Gaussian errors

We have seen the simple case

(x1, σe) −→ f (µ | x1, σe , f0(µ) = k)

Further (important) cases:

◮ several measurements, each with precisely known σi ;

◮ taking into account of priors;

◮ getting µ and σ (‘σe ’) from a sample
(‘small samples’ next lecture);

◮ predicting a new (‘future’) value of x ;

◮ taking into account of systematics
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Inference and prediction related to Gaussian errors

We have seen the simple case

(x1, σe) −→ f (µ | x1, σe , f0(µ) = k)

Further (important) cases:

◮ several measurements, each with precisely known σi ;

◮ taking into account of priors;

◮ getting µ and σ (‘σe ’) from a sample
(‘small samples’ next lecture);

◮ predicting a new (‘future’) value of x ;

◮ taking into account of systematics – general introduction and
exact solution for an important case in Physics.
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Predictive distribution

µ σe

xp xf

√

√

What shall we observe in a next measurement xf (’f’ as ‘future’),
given our knowledge on µ based on the previous observation xp
(Note the new evocative name for the observation, instead of x1)?
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Predictive distribution

µ σe

xp xf

√

√

What shall we observe in a next measurement xf (’f ’ as ‘future’),
given our knowledge on µ based on the previous observation xp?
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Predictive distribution

µ σe

xp xf

√

√

What shall we observe in a next measurement xf (’f ’ as ‘future’),
given our knowledge on µ based on the previous observation xp?
(Note the new evocative name for the observation, instead of x1)
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Predictive distribution

xp → µ → xf

0 0.5 1 1.5 2
Μ

x

x

Observation

Prediction

EHΜL

EHxfL
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case (considering the possibility that σp 6= σf )

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ

© GdA, PhLab-05 11/05/21 35/51



Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case (considering the possibility that σp 6= σf )

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ

=

∫ +∞

−∞

1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case (considering the possibility that σp 6= σf )

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ

=

∫ +∞

−∞

1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ

=
1

√
2π
√

σ2
p + σ2

f

exp

[

− (xf − xp)
2

2 (σ2
p + σ2

f )

]
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case (considering the possibility that σp 6= σf )

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ

=

∫ +∞

−∞

1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ

=
1

√
2π
√

σ2
p + σ2

f

exp

[

− (xf − xp)
2

2 (σ2
p + σ2

f )

]

In particular, if σp = σf = σ, then

f (xf | xp, σp = σf = σ) =
1√

2π
√
2σ

exp

[

−(xf − xp)
2

2 (
√
2σ)2

]
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000
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µ = xp ±
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= 8.1234± 0.0072

© GdA, PhLab-05 11/05/21 36/51



Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s
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Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s = 8.12± 0.72 (Gaussian)
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s = 8.12± 0.72 (Gaussian)

More interesting was question concerning x f , remembering that
an aritmethic average can be considered an equivalent
measurement with ‘σe ’ = σ(x) = σ(xi )/

√
n:
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s = 8.12± 0.72 (Gaussian)

More interesting was question concerning x f , remembering that
an aritmethic average can be considered an equivalent
measurement with ‘σe ’ = σ(x) = σ(xi )/

√
n:

x f = xp ±
√
2

s√
n
= 8.123± 0.010 (Gaussian)
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Expected x f having observed xp

However, the factor
√
2 is usually ‘forgotten’
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Expected x f having observed xp

However, the factor
√
2 is usually ‘forgotten’

(Glen Cowan, Statistical Data Analysis)
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Remark on ‘conventional statistics’
Objection:

“A method which is ‘classical’ and ‘exact’ cannot be wrong”
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Uhm. . .
◮ Frequentist ‘gurus’ are champions in misusing terminonology,

thus confusing people (“CL”, “confidence intervals”).

© GdA, PhLab-05 11/05/21 38/51



Remark on ‘conventional statistics’
Objection:

“A method which is ‘classical’ and ‘exact’ cannot be wrong”
Uhm. . .
◮ Frequentist ‘gurus’ are champions in misusing terminonology,
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◮ Details in GdA, About the proof of the so called

exact classical confidence intervals. Where is the trick?,
https://arxiv.org/abs/physics/0605140
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If you like, the method is exact not because it provides precisely
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exact classical confidence intervals. Where is the trick?,
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If you like, the method is exact not because it provides precisely
the correct answer to our problem, but because
it results from an exact prescription.
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Remark on ‘conventional statistics’
Objection:

“A method which is ‘classical’ and ‘exact’ cannot be wrong”
Uhm. . .
◮ Frequentist ‘gurus’ are champions in misusing terminonology,

thus confusing people (“CL”, “confidence intervals”).
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thus confusing people (“CL”, “confidence intervals”).
◮ Details in GdA, About the proof of the so called

exact classical confidence intervals. Where is the trick?,
https://arxiv.org/abs/physics/0605140

If you like, the method is exact not because it provides precisely
the correct answer to our problem, but because
it results from an exact prescription.

Q. Does the method always produce wrong results?
A. In most routine cases the answer is ‘numerically’ OK.

In Frontier Physics cases this is often not the case (!).
GdA, Bayesian reasoning versus conventional statistics

in High Energy Physics,
https://arxiv.org/abs/physics/9811046
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[ for each i ]

xi ∼ N (µ, σi) with σi assumed precisely known

f (µ | x1, x2, . . . , σ1, σ2, . . . , I ) ≡ f (µ | x , σ . . . , I ).
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Inferring µ from several ‘independent’ measurements

µ

σ1 σ2

x1 x2

µ

σi

xi

[ for each i ]

xi ∼ N (µ, σi) with σi assumed precisely known

f (µ | x1, x2, . . . , σ1, σ2, . . . , I ) ≡ f (µ | x , σ . . . , I ).

f (µ | x , σ, I ) =
f (µ, x |σ, I )
f (x |σ, I )

∝ f (µ, x |σ, I ) .
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Independency vs conditional independency
Important remark:

Are the xi of this model really independent?
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Important remark:

Are the xi of this model really independent?

◮ NO ⇒ if they were independent it would be impossible
to learn from each other

−→ f (xf | xp)
f (x1, x2) = f (x1 | x2) · f (x2)

◮ They are, more precisely, conditionally independent:
◮ given µ they become independent

f (x1, x2 |µ) = f (x1 | x2, µ) · f (x2 |µ)
= f (x1 |µ) · f (x2 |µ)

Similar to the six boxes:
– Composition perfectly known → E (i) and E (j) independent;
– Uncertain composition → E (i) changes P(E (j)).
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Propagation of evidence in a ‘divergent connection’
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More in arXiv:1504.02065 (“Learning about probabilistic inference and

forecasting by playing with multivariate normal distributions”)
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From two observations to n observations
Using the chain rule

f (x1, x2, µ, |σ1, σ2, I ) = f (x1 | x2, µ, σ1, σ2, I )

© GdA, PhLab-05 11/05/21 42/51



From two observations to n observations
Using the chain rule

f (x1, x2, µ, |σ1, σ2, I ) = f (x1 | x2, µ, σ1, σ2, I ) ·
f (x2 |µ, σ1, σ2, I ) ·

© GdA, PhLab-05 11/05/21 42/51



From two observations to n observations
Using the chain rule

f (x1, x2, µ, |σ1, σ2, I ) = f (x1 | x2, µ, σ1, σ2, I ) ·
f (x2 |µ, σ1, σ2, I ) ·
f (µ |σ1, σ2, I )

© GdA, PhLab-05 11/05/21 42/51



From two observations to n observations
Using the chain rule

f (x1, x2, µ, |σ1, σ2, I ) = f (x1 | x2, µ, σ1, σ2, I ) ·
f (x2 |µ, σ1, σ2, I ) ·
f (µ |σ1, σ2, I )

= f (x1 |µ, σ1, I ) · f (x2 |µ, σ2, I ) · f (µ | I )

© GdA, PhLab-05 11/05/21 42/51



From two observations to n observations
Using the chain rule

f (x1, x2, µ, |σ1, σ2, I ) = f (x1 | x2, µ, σ1, σ2, I ) ·
f (x2 |µ, σ1, σ2, I ) ·
f (µ |σ1, σ2, I )

= f (x1 |µ, σ1, I ) · f (x2 |µ, σ2, I ) · f (µ | I )

⇒ f (x , µ, |σ) =

[

∏

i

f (xi |µ, σi )
]

· f0(µ)

Using (for the moment) a uniform prior (practically flat distribution
in the region of interest):

f (µ | x , σ, f0(µ) = k) ∝ f (x , µ, |σ) =
∏

i

fN (xi |µ, σi )
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Details of the calculations
f (µ | x , σ, f0(µ) = k) ∝

∏

i

exp

[

−(xi − µ)2

2σ2
i

]
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Inferring µ from n ‘independent’ measurements

f (µ | x , σ, f0(µ) = k) ∝ exp
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2σ2
C

]
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Inferring µ from n ‘independent’ measurements

f (µ | x , σ, f0(µ) = k) ∝ exp

[

−−2 x µ+ µ2

2σ2
C

]

∝ exp

[

−x2 − 2 x µ+ µ2

2σ2
C

]

∝ exp

[

−(µ− x)2

2σ2
C

]

(having used the technique of complementing the exponential)
with

x =

∑

i xi/σ
2
i

∑

i 1/σ
2
i

x2 =

∑

i x
2
i /σ

2
i

∑

i 1/σ
2
i

σ2
C =

1
∑

i 1/σ
2
i
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Yes, but the prior?

© GdA, PhLab-05 11/05/21 45/51



Role of the prior

Yes, but the prior?
Remember that (writing σe again)

f (µ | x1 σe) ∝ f (x1 |µ, σe) · f0(µ)

© GdA, PhLab-05 11/05/21 45/51



Role of the prior

Yes, but the prior?
Remember that (writing σe again)

f (µ | x1 σe) ∝ f (x1 |µ, σe) · f0(µ)

◮ The first factor in the r.h.s. (‘likelihood’)
prefers a region a few σe ’s around x1.
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Role of the prior

Yes, but the prior?
Remember that (writing σe again)

f (µ | x1 σe) ∝ f (x1 |µ, σe) · f0(µ)

◮ The first factor in the r.h.s. (‘likelihood’)
prefers a region a few σe ’s around x1.

◮ If f0(µ) is ‘practically flat’ in that region, then it is irrelevant.

◮ Otherwise model it at best and do the math (e.g. by MCMC).

◮ And, please, remember Gauss (well aware of the limitations)
. . . and that

”All models are wrong, but some are useful”
(G. Box)

And GAnd Gauss was the first to realize that
And Gthe Gaussian is indeed ‘wrong’ !
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.

Poisson distribution: Gamma distribution.

Gaussian distribution: Gaussian distribution.

Not very flexible, but a a good starting point

◮ in order to avoid to blindly accept ‘crazy results’
(imagine someone mixing up orders of magnitudes);

◮ our prior could come from a previous experimental result,
providing a Gaussian pdf about ‘µ’;

◮ making the Gaussian prior broad enough
we can recover a ≈ uniform distribution.
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.

Poisson distribution: Gamma distribution.

Gaussian distribution: Gaussian distribution.

Not very flexible, but a a good starting point

◮ in order to avoid to blindly accept ‘crazy results’
(imagine someone mixing up orders of magnitudes);

◮ our prior could come from a previous experimental result,
providing a Gaussian pdf about ‘µ’;

◮ making the Gaussian prior broad enough
we can recover a ≈ uniform distribution.

From the second item it is clear that we can make use of what
we have developed in the previous slides for ‘combinations’.
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.

Poisson distribution: Gamma distribution.

Gaussian distribution: Gaussian distribution.

Not very flexible, but a a good starting point

◮ in order to avoid to blindly accept ‘crazy results’
(imagine someone mixing up orders of magnitudes);

◮ our prior could come from a previous experimental result,
providing a Gaussian pdf about ‘µ’;

◮ making the Gaussian prior broad enough
we can recover a ≈ uniform distribution.

From the second item it is clear that we can make use of what
we have developed in the previous slides for ‘combinations’.
(Just measurement nr 1, or nr 0, if you prefer. . . )
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Adding a prior piece of information

f (µ | x , σ) ∝
n
∏

i=1

exp

[

−(xi − µ)2

2σ2
i

]

· f0(µ)
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∏
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∏

i=1

exp

[

−(xi − µ)2

2σ2
i

]

· f0(µ)

∝
n
∏
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Adding a prior piece of information

f (µ | x , σ) ∝
n
∏

i=1

exp

[
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i

]

· f0(µ)
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n
∏
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−(xi − µ)2

2σ2
i

]
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[

−(µ− x0)
2

2σ2
0

]

∝
n
∏

i=0
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[

−(xi − µ)2

2σ2
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]

·

∝ exp

[

−(µ− x)2

2σ2
C

]

· exp
[

−(µ− x0)
2

2σ2
0

]
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Adding a prior piece of information

f (µ | x , σ) ∝
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∏
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·
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−(µ− x)2

2σ2
C

]

· exp
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−(µ− x0)
2

2σ2
0

]
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[

−(µ− xp)
2

2σ2
Cp

]
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Adding a prior piece of information

f (µ | x , σ) ∝
n
∏
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]
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2
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]

∝ exp

[
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with

xp =
x/σ2

C + x0/σ
2
0

1/σ2
C + 1/σ2

0

;
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∏
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Adding a prior piece of information

f (µ | x , σ) ∝
n
∏

i=1

exp

[
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with

xp =
x/σ2

C + x0/σ
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;
1
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=
1

σ2
C

+
1

σ2
0

σ2
0 ≫ σ2

C ⇒ irrelevant (≈ ’uniform’).
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

mu.true = 3; sigma.true = 2; sample.n = 20

x = rnorm(sample.n, mu.true, sigma.true)
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

mu.true = 3; sigma.true = 2; sample.n = 20

x = rnorm(sample.n, mu.true, sigma.true)

JAGS calls

data = list(x=x)

inits = list(mu=mean(x), tau=1/var(x))

jm <- jags.model(model, data, inits)

update(jm, 100)

chain <- coda.samples(jm, c("mu","sigma"), n.iter=10000)
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Joint inference of µ and τ (→ σ) with JAGS/rjags
⇒ inf mu sigma.R
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Joint inference of µ and τ (→ σ) with JAGS/rjags
⇒ inf mu sigma.R

mu = 2.87, std(mu) = 0.44; sigma = 1.94, std(sigma) = 0.31
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Proposed exercise

Try to reproduce the results of inf mu sigma.R

by a self-written Metropolis algorithm

Remark: the priors about µ and σ (there is no need to use τ)
can be simply uniform, but, obviously, the unnormalized joint
distribution has to return 0 for σ ≤ 0, such that the MC chain
cannot make a jump into such uphysical region.
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The End
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