
Measurements, uncertainties
and probabilistic inference/forecasting

Giulio D’Agostini
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)

> xy <- c(0,0)
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)

> xy <- c(0,0)

> ( xy <- prop.sq(xy, 1) )

[1] 0.4555056 -0.3119171
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)

> xy <- c(0,0)

> ( xy <- prop.sq(xy, 1) )

[1] 0.4555056 -0.3119171

> ( xy <- prop.sq(xy, 1) )

[1] 0.1603211 -0.2819019
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)

> xy <- c(0,0)

> ( xy <- prop.sq(xy, 1) )

[1] 0.4555056 -0.3119171

> ( xy <- prop.sq(xy, 1) )

[1] 0.1603211 -0.2819019

⇒ mcmc unbound.R
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A simple random walk on a plane
> prop.sq <- function(xy.o, d) xy.o + runif(2,-d, d)

> xy <- c(0,0)

> ( xy <- prop.sq(xy, 1) )

[1] 0.4555056 -0.3119171

> ( xy <- prop.sq(xy, 1) )

[1] 0.1603211 -0.2819019

⇒ mcmc unbound.R
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

© GdA, PhLab-06 18/05/21 3/58



Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?

→ Reject the move that leads out of the square.
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?

→ Reject the move that leads out of the square.
◮ Obvious. . .
◮ but how to record the points from which there was a rejection?
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?

→ Reject the move that leads out of the square.
◮ Obvious. . .
◮ but how to record the points from which there was a rejection?

1. Just count the point once, until the ‘chain’ moves.
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?

→ Reject the move that leads out of the square.
◮ Obvious. . .
◮ but how to record the points from which there was a rejection?

1. Just count the point once, until the ‘chain’ moves.
2. Count it many time we “move to it”

(a rejection can be seen as a move to the same position!).
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Visiting uniformly the points inside a square

◮ How can we modify the previous example in order that the
visited points are uniform inside a square?

◮ That is we would like to get something similar to
> x <- runif(n, -1, 1)

> y <- runif(n, -1, 1)

◮ How can we bound the random walk to force it
to remain inside the square?

→ Reject the move that leads out of the square.
◮ Obvious. . .
◮ but how to record the points from which there was a rejection?

1. Just count the point once, until the ‘chain’ moves.
2. Count it many time we “move to it”

(a rejection can be seen as a move to the same position!).

⇒ mcmc square.R
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Visiting uniformly the points inside a square
200 attempts
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Visiting uniformly the points inside a square
10000 attempts (intermediate cyan ‘lines’ omitted)
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Visiting uniformly the points inside a square
Method 1: count points only once
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Not what we wanted!
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Visiting uniformly the points inside a square
Method 2: count points several times
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Visiting uniformly the points inside a square
Method 2: count points several times
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Visiting uniformly the points inside a square
Method 2: count points several times
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Why?

MCMC theory left to self study
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Inferring µ and σ from n ‘independent’ measurements

f (µ, σ | x , f0(µ, σ)=k) ∝
∏

i

1

σ
exp

[

−(xi − µ)2

2σ2

]
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Inferring µ and σ from n ‘independent’ measurements
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]

But this time we cannot use the trick of complementing the
exponential, because x2 is devided by 2σ2/n
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∝ σ−n exp

[

−x2 − 2 x µ+ µ2)

2σ2/n

]

But this time we cannot use the trick of complementing the
exponential, because x2 is devided by 2σ2/n
Nevertheless, we can add and remove x2, thus getting in the
numerator of the exponent

x2 − x2 + x2 − 2 x µ+ µ2
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Inferring µ and σ from n ‘independent’ measurements

f (µ, σ | x , f0(µ, σ)=k) ∝
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]

But this time we cannot use the trick of complementing the
exponential, because x2 is devided by 2σ2/n
Nevertheless, we can add and remove x2, thus getting in the
numerator of the exponent

x2 − x2 + x2 − 2 x µ+ µ2 = x2 − x2 + (x − µ)2
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Inferring µ and σ from n ‘independent’ measurements

f (µ, σ | x , f0(µ, σ)=k) ∝
∏

i

1

σ
exp

[

−(xi − µ)2

2σ2

]

∝ σ−n exp

[

−
∑

i

(xi − µ)2

2σ2

]

∝ σ−n exp

[

−
∑

i (xi
2 − 2 xi µ+ µ2)

2σ2

]

∝ σ−n exp

[

−x2 − 2 x µ+ µ2)

2σ2/n

]

But this time we cannot use the trick of complementing the
exponential, because x2 is devided by 2σ2/n
Nevertheless, we can add and remove x2, thus getting in the
numerator of the exponent

x2 − x2 + x2 − 2 x µ+ µ2 = x2 − x2 + (x − µ)2 = s2 + (x − µ)2
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Inferring µ and σ from n ‘independent’ measurements

We have then

f (µ, σ | x , f0(µ, σ)=k) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

with s2 equal to the sample variance.
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Inferring µ and σ from n ‘independent’ measurements

We have then

f (µ, σ | x , f0(µ, σ)=k) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

with s2 equal to the sample variance.

That is

f (µ, σ | x , f0(µ, σ)) = f (µ, σ | x , s, f0(µ, σ))
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Inferring µ and σ from n ‘independent’ measurements

We have then

f (µ, σ | x , f0(µ, σ)=k) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

with s2 equal to the sample variance.

That is

f (µ, σ | x , f0(µ, σ)) = f (µ, σ | x , s, f0(µ, σ))

⇒ The inference does not depend on the detailed knowledge of x
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Inferring µ and σ from n ‘independent’ measurements

We have then

f (µ, σ | x , f0(µ, σ)=k) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

with s2 equal to the sample variance.

That is

f (µ, σ | x , f0(µ, σ)) = f (µ, σ | x , s, f0(µ, σ))

⇒ The inference does not depend on the detailed knowledge of x ,
but rather only on x and s2.
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Inferring µ and σ from n ‘independent’ measurements

We have then

f (µ, σ | x , f0(µ, σ)=k) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

with s2 equal to the sample variance.

That is

f (µ, σ | x , f0(µ, σ)) = f (µ, σ | x , s, f0(µ, σ))

⇒ The inference does not depend on the detailed knowledge of x ,
but rather only on x and s2.

⇒ statistical sufficiency
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Inferring µ and σ from n ‘independent’ measurements
Adding the prediction of xf
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Inferring µ and σ from n ‘independent’ measurements
Adding the prediction of xf

f (xf , µ, σ | . . .) = f (xf |µ, σ, . . .) · f (µ, σ | . . .)
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Inferring µ and σ from n ‘independent’ measurements
Adding the prediction of xf

f (xf , µ, σ | . . .) = f (xf |µ, σ, . . .) · f (µ, σ | . . .)
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Inferring µ and σ from n ‘independent’ measurements
Adding the prediction of xf
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that we can extend it to f (x f , µ, σ | . . .)
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Inferring µ and σ from n ‘independent’ measurements
Adding the prediction of xf

f (xf , µ, σ | . . .) = f (xf |µ, σ, . . .) · f (µ, σ | . . .)

that is

f (xf , µ, σ | . . .) ∝ σ−1 exp
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σ−n exp
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∝ σ−(n+1) exp
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2σ2

]

· exp
[

−s2 + (µ− x)2

2σ2/n

]

that we can extend it to f (x f , µ, σ | . . .), that is

f (x f , µ, σ | . . .) ∝ σ−(n+1) exp

[

−(xf − µ)2

2σ2/n

]

· exp
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]

Try to do it with Metropolis!
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s, . . .) =

∫ ∞

0
f (µ, σ | x , s) dσ
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2
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]

· f0(µ, σ)

Then

f (µ | x , s, . . .) =

∫ ∞
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s, . . .) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s, . . .) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Some remarks are in order:
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[
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Some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from

a flat prior!)
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp
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Then
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f (µ, σ | x , s) dµ

Some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from

a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s, . . .) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s, . . .) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from

a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)

◮ It tends to Gaussian when ‘σ is precisely measured’
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Back to f (µ, σ) from a sample
In practice

f (µ, σ | x , s, . . .) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s, . . .) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s, . . .) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from

a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)

◮ It tends to Gaussian when ‘σ is precisely measured’

⇒ n→∞
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ ⇒ it induces abstract
speculations in mathematicians and statisticians who often have
little idea of what they are talking about
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ ⇒ it induces abstract
speculations in mathematicians and statisticians who often have
little idea of what they are talking about (Gauss was Gauss!).
→ See appendix with details on small numbers
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Including uncertainties

due to systematics

Exact solution in a special (important) case
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Introducing systematics
Influence quantities (ISO)
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By influence quantities we mean:

→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);
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Introducing systematics
Influence quantities (ISO)
By influence quantities we mean:

→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’
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By influence quantities we mean:

→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’

From a probabilistic point of view, there is no distinction between
µ and h:
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By influence quantities we mean:

→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’

From a probabilistic point of view, there is no distinction between
µ and h: they are all conditional hypotheses for the x , i.e. causes
which produce the observed effects.
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→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’

From a probabilistic point of view, there is no distinction between
µ and h: they are all conditional hypotheses for the x , i.e. causes
which produce the observed effects. The difference is simply that
we are interested in µ rather than in h.
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(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’

From a probabilistic point of view, there is no distinction between
µ and h: they are all conditional hypotheses for the x , i.e. causes
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we are interested in µ rather than in h.

(But remember that many ’h’s are Physics:

© GdA, PhLab-06 18/05/21 14/58



Introducing systematics
Influence quantities (ISO)
By influence quantities we mean:

→ all kinds of external factors which can influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;
→ all possible hypotheses upon which the results may depend

(e.g. Monte Carlo parameters).
→ ‘h’

From a probabilistic point of view, there is no distinction between
µ and h: they are all conditional hypotheses for the x , i.e. causes
which produce the observed effects. The difference is simply that
we are interested in µ rather than in h.

(But remember that many ’h’s are Physics:
for example you will not be able to get meaningful results on the
primordial Universe if you do not first understand the Physics of
Cosmic Dust)
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Introducing systematics
Several approaches (within probability theory – no adhocheries!)

Uncertainty due to systematic effects is also included in a natural
way in this approach. Let us first define the notation (i is the
generic index):
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Uncertainty due to systematic effects is also included in a natural
way in this approach. Let us first define the notation (i is the
generic index):

◮
x = {x1, x2, . . . xnx} is the ‘n-tuple’ (vector) of data Xi ;

© GdA, PhLab-06 18/05/21 15/58



Introducing systematics
Several approaches (within probability theory – no adhocheries!)

Uncertainty due to systematic effects is also included in a natural
way in this approach. Let us first define the notation (i is the
generic index):

◮
x = {x1, x2, . . . xnx} is the ‘n-tuple’ (vector) of data Xi ;

◮ µ = {µ1, µ2, . . . µnµ} is the n-tuple of (true) values µi ;
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Introducing systematics
Several approaches (within probability theory – no adhocheries!)

Uncertainty due to systematic effects is also included in a natural
way in this approach. Let us first define the notation (i is the
generic index):

◮
x = {x1, x2, . . . xnx} is the ‘n-tuple’ (vector) of data Xi ;

◮ µ = {µ1, µ2, . . . µnµ} is the n-tuple of (true) values µi ;

◮
h = {h1, h2, . . . hnh} is the n-tuple of influence quantities Hi .
(see ISO GUM).
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Taking into account of uncertain h
1. Global inference on f (µ, h)

◮ We can use Bayes’ theorem to make a joint inference on µ

and h.
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Taking into account of uncertain h
1. Global inference on f (µ, h)

◮ We can use Bayes’ theorem to make a joint inference on µ

and h. A subsequent marginalization over h yields the p.d.f.
of interest:

x ⇒ f (µ,h | x)⇒ f (µ | x) .
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Taking into account of uncertain h
1. Global inference on f (µ, h)

◮ We can use Bayes’ theorem to make a joint inference on µ

and h. A subsequent marginalization over h yields the p.d.f.
of interest:

x ⇒ f (µ,h | x)⇒ f (µ | x) .
This method, depending on the joint prior distribution
f◦(µ,h), can even model possible correlations
between µ and h.
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Taking into account of uncertain h
1. Global inference on f (µ, h)

◮ We can use Bayes’ theorem to make a joint inference on µ

and h. A subsequent marginalization over h yields the p.d.f.
of interest:

x ⇒ f (µ,h | x)⇒ f (µ | x) .
This method, depending on the joint prior distribution
f◦(µ,h), can even model possible correlations
between µ and h.(∗)

(∗) Usually this is not the case, but in some field of reaserch it is not

impossible that e.g. the physical properties of the instrument depend on

the physical properties (of materials) you are studying.
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Taking into account of uncertain h
2. Conditional inference

◮ Given the observed data, one has a joint distribution of µ for
all possible configurations of h:

x ⇒ f (µ | x ,h) .
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Taking into account of uncertain h
2. Conditional inference

◮ Given the observed data, one has a joint distribution of µ for
all possible configurations of h:

x ⇒ f (µ | x ,h) .

Each conditional result is reweighed with the distribution of
beliefs of h, using the well-known law of probability:

f (µ | x) =
∫

f (µ | x ,h) f (h) dh .
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Taking into account of uncertain h
Conditional inference

µ

xxo

true value

observed value

f(µ|xo)

f(µ|xo ,h)

f(x|µo ,h)

µo

f(x|µo)
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Taking into account of uncertain h
3.Propagation of uncertainties

◮ Essentially, one applies the propagation of uncertainty, making
use of the following model:
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Taking into account of uncertain h
3.Propagation of uncertainties

◮ Essentially, one applies the propagation of uncertainty, making
use of the following model: One considers a ‘raw result’ on
raw values µR for some nominal values of the influence
quantities, i.e.

f (µR | x ,h◦) .
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of the raw ones and of the possible values of the influence
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µi = µi (µiR ,h) ,

and f (µ) is evaluated by probability rules.
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Taking into account of uncertain h
3.Propagation of uncertainties

◮ Essentially, one applies the propagation of uncertainty, making
use of the following model: One considers a ‘raw result’ on
raw values µR for some nominal values of the influence
quantities, i.e.

f (µR | x ,h◦) .

Then the (corrected) true values are obtained as a function
of the raw ones and of the possible values of the influence
quantities, i.e.

µi = µi (µiR ,h) ,

and f (µ) is evaluated by probability rules.

This third approach is particularly convenient to make linear

expansions which lead to approximate formulae.
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is usually not exactly known,

owing to calibration uncertainty.
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is usually not exactly known,

owing to calibration uncertainty.
◮ This can be parametrized assuming that the (true) value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ :

Z ∼ N (0, σZ )
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is usually not exactly known,

owing to calibration uncertainty.
◮ This can be parametrized assuming that the (true) value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ :

Z ∼ N (0, σZ )

◮ Since the (true) value of µ is usually independent of the true
value of Z , the prior joint probability density function can be
written as the product of the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2π σZ
exp

[

− z2

2σ2
Z

]

.
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is usually not exactly known,

owing to calibration uncertainty.
◮ This can be parametrized assuming that the (true) value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ :

Z ∼ N (0, σZ )

◮ Since the (true) value of µ is usually independent of the true
value of Z , the prior joint probability density function can be
written as the product of the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2π σZ
exp

[

− z2

2σ2
Z

]

.

◮ X is no longer Gaussian distributed around µ,
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is usually not exactly known,

owing to calibration uncertainty.
◮ This can be parametrized assuming that the (true) value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ :

Z ∼ N (0, σZ )

◮ Since the (true) value of µ is usually independent of the true
value of Z , the prior joint probability density function can be
written as the product of the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2π σZ
exp

[

− z2

2σ2
Z

]

.

◮ X is no longer Gaussian distributed around µ, but
around µ+ Z :

X ∼ N (µ+ Z , σ)
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Graphical model
In terms of the generic variables Xi (arXiv:1504.02065)

X1 X2

XV

X4X3 X5

X1 ←→ µ

X2 ←→ Z

XV ←→ µ+ Z

X3−... ←→ Xi (observations)
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Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.
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Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]
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Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]

After joint inference and marginalization

f (µ | x1) =
∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dz

∫∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dµ dz
.

© GdA, PhLab-06 18/05/21 22/58



Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]

After joint inference and marginalization

f (µ | x1) =
∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dz

∫∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dµ dz
.

Integrating we get

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.
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Systematics due to uncertain offset
Technical remark

It may help to know that

∫ +∞

−∞
exp

[

b x − x2

a2

]

dx =
√
a2 π exp

[

a2 b2

4

]
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still Gaussian, but with a larger variance
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still Gaussian, but with a larger variance
◮ The global standard uncertainty is the quadratic combination

of that due to the statistical fluctuation of the data sample
and the uncertainty due to the imperfect knowledge of the
systematic effect:

σ2
tot = σ2

1 + σ2
Z .
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still Gaussian, but with a larger variance
◮ The global standard uncertainty is the quadratic combination

of that due to the statistical fluctuation of the data sample
and the uncertainty due to the imperfect knowledge of the
systematic effect:

σ2
tot = σ2

1 + σ2
Z .

◮ This result (a theorem under well stated conditions!) is often used

as a ‘prescription’, although there are still some “old-fashioned”

recipes which require different combinations of the contributions to

be performed.
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
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Z ∼ N (0, σZ )
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)

X2 ∼ N (µ2 + Z , σ2)
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)

X2 ∼ N (µ2 + Z , σ2)

f (x1, x2 |µ1, µ2, z) =
1√

2π σ1
exp

[

−(x1 − µ1 − z)2

2σ2
1

]

× 1√
2π σ2

exp

[

−(x2 − µ2 − z)2

2σ2
2

]
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)

X2 ∼ N (µ2 + Z , σ2)

f (x1, x2 |µ1, µ2, z) =
1√

2π σ1
exp

[

−(x1 − µ1 − z)2

2σ2
1

]

× 1√
2π σ2

exp

[

−(x2 − µ2 − z)2

2σ2
2

]

=
1

2π σ1σ2
exp

[

−1

2

(

(x1 − µ1 − z)2

σ2
1

+
(x2 − µ2 − z)2

σ2
2

)]
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz

=
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√
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√
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√
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σ2
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Z
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√
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√
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√
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√
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz

=
1

2π
√
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1 + σ2
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√

σ2
2 + σ2

Z

√

1− ρ2

× exp
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2 (1− ρ2)
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1 + σ2

Z
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√
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√
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Z

+
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2
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2 + σ2

Z
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where

ρ =
σ2
Z

√

σ2
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Z

√
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2 + σ2

Z

.

⇒ bivariate normal distribution!
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√
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√
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ρ =
σ2
Z

√
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
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x1,
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µ2 ∼ N
(

x2,
√
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√
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
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√
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√
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Checks, defining S = µ1 + µ2 and D = µ1 − µ2
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
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√
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√
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√
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Systematics due to uncertain offset
Summary:
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√
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(
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√
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

µ2 ∼ N
(

x2,
√
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2 + σ2

Z

)

ρ =
σ2
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√
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√
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2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z

Checks, defining S = µ1 + µ2 and D = µ1 − µ2

D ∼ N
(

x1 − x2,
√

σ2
1 + σ2

2

)

S ∼ N
(

x1 + x2,
√

σ2
1 + σ2

2 + (2σZ )2
)

As more or less intuitively expected from an offset!
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A simple example with JAGS

model { => norm_sist_z.R

for (i in 1:length(x)) {

x[i] ~ dnorm(mu.s, tau)

}

mu.s <- mu + z;

mu ~ dnorm(0.0, 1.0E-6)

z ~ dnorm(0, 1/sigma.z^2)

tau ~ dgamma(1.0, 1.0E-4)

sigma <- 1/sqrt(tau)

x.f ~ dnorm(mu.s, tau)

}
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model { => norm_sist_z.R

for (i in 1:length(x)) {

x[i] ~ dnorm(mu.s, tau)

}

mu.s <- mu + z;

mu ~ dnorm(0.0, 1.0E-6)

z ~ dnorm(0, 1/sigma.z^2)

tau ~ dgamma(1.0, 1.0E-4)

sigma <- 1/sqrt(tau)

x.f ~ dnorm(mu.s, tau)

}

◮ extend it to two data sets measuring µ1 and µ2 with common
systematics;
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x[i] ~ dnorm(mu.s, tau)

}

mu.s <- mu + z;

mu ~ dnorm(0.0, 1.0E-6)

z ~ dnorm(0, 1/sigma.z^2)

tau ~ dgamma(1.0, 1.0E-4)

sigma <- 1/sqrt(tau)

x.f ~ dnorm(mu.s, tau)

}

◮ extend it to two data sets measuring µ1 and µ2 with common
systematics;

◮ include also derived quantities, like sum and difference;
◮ modify the model in order to describe a systematics affetting

the scale
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A simple example with JAGS

model { => norm_sist_z.R

for (i in 1:length(x)) {

x[i] ~ dnorm(mu.s, tau)

}

mu.s <- mu + z;

mu ~ dnorm(0.0, 1.0E-6)

z ~ dnorm(0, 1/sigma.z^2)

tau ~ dgamma(1.0, 1.0E-4)

sigma <- 1/sqrt(tau)

x.f ~ dnorm(mu.s, tau)

}

◮ extend it to two data sets measuring µ1 and µ2 with common
systematics;

◮ include also derived quantities, like sum and difference;
◮ modify the model in order to describe a systematics affetting

the scale: f = 1± σf ;
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A simple example with JAGS

model { => norm_sist_z.R

for (i in 1:length(x)) {

x[i] ~ dnorm(mu.s, tau)

}

mu.s <- mu + z;

mu ~ dnorm(0.0, 1.0E-6)

z ~ dnorm(0, 1/sigma.z^2)

tau ~ dgamma(1.0, 1.0E-4)

sigma <- 1/sqrt(tau)

x.f ~ dnorm(mu.s, tau)

}

◮ extend it to two data sets measuring µ1 and µ2 with common
systematics;

◮ include also derived quantities, like sum and difference;
◮ modify the model in order to describe a systematics affetting

the scale: f = 1± σf ;
◮ then, add other derived quantities, like product and ratio.
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
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parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
Note: Linearity is between µyi and
µxi , not between yi and xi !
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◮ apply probability rules;
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]

→ f (θ | x, y, I )
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]

→ f (θ | x, y, I )
→ f (m, c | x, y,σ), in the case of case of linear fit
with “σ’s known a priori” (!)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
◮ ⇒ aim of fit (σ’s known): {x , y} → θ = (m, c)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
◮ ⇒ aim of fit (σ’s known): {x , y} → θ = (m, c)
◮ If σx ’s and σy ’s are unkown and assumed all equal
{x , y} → θ = (m, c , σx , σy )

◮ etc. . .
© GdA, PhLab-06 18/05/21 30/58



Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .
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f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)
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somehow” (or “to be determined in some way”)

◮ Independence of data points.
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Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)

◮ Independence of data points.

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i

(yi − µyi )
2

2σ2
i

]

· f0(m, c)

∝ exp

[

−1

2

∑

i

(yi −mxi − c)2

σ2
i

]

· f0(m, c)
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Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)

◮ Independence of data points.

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i

(yi − µyi )
2

2σ2
i

]

· f0(m, c)

∝ exp

[

−1

2

∑

i

(yi −mxi − c)2

σ2
i

]

· f0(m, c)

⇒ flat priors: inference only depends on exp
[

−1
2

∑

i
(yi−mxi−c)2

σ2
i

]

.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.

◮ As an approximation, one can obtain best fit parameters and
covariance matrix by the ‘Gaussian trick’
⇒ ϕ(m, c) ∝ χ2.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.

◮ As an approximation, one can obtain best fit parameters and
covariance matrix by the ‘Gaussian trick’
⇒ ϕ(m, c) ∝ χ2.

⇒ same result of the detailed one is achieved, simply because the
problem is linear!
(No garantee in general!)
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
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exponent” fail, because they miss the contribution from σ−n!
◮ The Gaussian trick applied to the full posterior perfoms better.
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
◮ The Gaussian trick applied to the full posterior perfoms better.

Residuals? Ok if there are many points, otherwise we do not take
into account the uncertainty on σ and its effect on the probability
function of m and c .
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
◮ The Gaussian trick applied to the full posterior perfoms better.

Residuals? Ok if there are many points, otherwise we do not take
into account the uncertainty on σ and its effect on the probability
function of m and c .
Note: as long as σ is constant (although unknown) and the prior
flat in m and c the best estimates of m and c do not depend in σ.
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Linear fits with uncertain σ in JAGS
Model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i]*m + c;

}

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Linear fits with uncertain σ in JAGS
Model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i]*m + c;

}

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

m.true = 2; c.true = 1; sigma.true=2

x = 1:20

y = m.true * x + c.true + rnorm(length(x), 0, sigma.true)

plot(x,y, col=’blue’,ylim=c(0,max(y)) )
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Linear fits with uncertain σ in JAGS
Plot of simulated data
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Linear fits with uncertain σ in JAGS
Plot of simulated data

Calling JAGS

ns=10000

jm <- jags.model(model, data, inits)

update(jm, 100)

chain <- coda.samples(jm, c("c","m","sigma"), n.iter=ns)

© GdA, PhLab-06 18/05/21 35/58



Linear fits with uncertain σ in JAGS
⇒ linear fit.R

JAGS summary

c = −0.04± 0.96; m = 2.10± 0.08; σ = 2.06± 0.34
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Linear fits with uncertain σ in JAGS
‘Check’ the result

c <- as.vector(chain[[1]][,1])

m <- as.vector(chain[[1]][,2])

sigma <- as.vector(chain[[1]][,3])

plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’)
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Linear fits with uncertain σ in JAGS
‘Check’ the result

c <- as.vector(chain[[1]][,1])

m <- as.vector(chain[[1]][,2])

sigma <- as.vector(chain[[1]][,3])

plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’)
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Linear fits with uncertain σ in JAGS

Correlation between m and c

plot(m,c,col=’cyan’)

cat(sprintf("rho(m,x) = %.3f\n", cor(m,c) ))
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Linear fits with uncertain σ in JAGS

Correlation between m and c

plot(m,c,col=’cyan’)

cat(sprintf("rho(m,x) = %.3f\n", cor(m,c) ))

ρ(m, c) = −0.88
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time?
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .

If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .

If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab)
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .

If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .

If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK: NO FIT: focus on circuits!
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .

If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK: NO FIT: focus on circuits!

Otherwise: ⇒ f (c ,m, σ | data points)
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)

Our problem

f (µyf | data, xf ) =

∫

f (µyf |m, c , xf ) · f (m, c | data) dc dm
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)

Our problem

f (µyf | data, xf ) =

∫

f (µyf |m, c , xf ) · f (m, c | data) dc dm

f (yf | data, xf ) =

∫

f (yf |µyf ) · f (µyf | data, xf ) dµyf
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Or we can do the ‘integral’ by sampling, using the MCMC histories
of the quantities of interest
(see previous model, without prediction)
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Or we can do the ‘integral’ by sampling, using the MCMC histories
of the quantities of interest
(see previous model, without prediction)
⇒ Left as exercise
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Forecasting new µy and new y with JAGS

µy (x = 30) = 63.0± 1.7; y(x = 30) = 63.0± 2.7
Try with Root ;-) [’data’ on the web site]
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The End

© GdA, PhLab-06 18/05/21 43/58



Appendix on small samples
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
◮ Evaluate f (µ, σ | x , s) and then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
◮ Evaluate f (µ, σ | x , s) and then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

∝
(

(x − µ)2 + s2
)−(n−1)/2

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

∝
(

(x − µ)2 + s2
)−(n−1)/2

∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2

∝
(

1 +
t2

ν

)−(ν+1)/2

with

ν = n − 2

t =
µ− x

s/
√
n − 2

,
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2

∝
(

1 +
t2

ν

)−(ν+1)/2

with

ν = n − 2

t =
µ− x

s/
√
n − 2

,

that is

µ = x +
s√
n − 2

t ,

where t is a “Student t” with ν = n − 2:
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Student t

-4 -2 2 4
x

0.1

0.2

0.3

0.4

f

Examples of Student t for ν equal to 1 , 2, 5, 10 and 100 (≈ “∞”).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

The uncertainty on σ increases the probability of the values of µ
far from x :

◮ not only the standard uncertainty increases, but the
distribution itself changes and, as ‘well know’ the t
distribution has ‘higher’ tails.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

The uncertainty on σ increases the probability of the values of µ
far from x :

◮ not only the standard uncertainty increases, but the
distribution itself changes and, as ‘well know’ the t
distribution has ‘higher’ tails.

However, when n is very large the Gaussian distribution is recovered
(the t-distribution tends to a gaussian), with σ(µ) = s/

√
n.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

◮ In no measurement we beleive that µ and/or σ could be
‘infinite’.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

◮ In no measurement we beleive that µ and/or σ could be
‘infinite’.

◮ Just plug in some reasonable, although very vagues, proper
priors, and the problem disappears.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

◮ Large n limit:

E(µ)
n→∞−−−→ x

σ(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

]
∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

]
∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

]
∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]

That is. . . (no special function)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

]
∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]

That is. . . (no special function)
[But if we would use τ = 1/σ2 we would recognize a Gamma. . . ]
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on mu and σ)

2 4 6 8 10
Σ�s

0.25

0.5

0.75

1

1.25

1.5

fHΣ�sL Prior uniforme in Σ

n = 3 (dotted), n = 5 (dashed) e n = 10 (continous).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

2 4 6 8 10
Σ�s

0.25

0.5

0.75

1

1.25

1.5

fHΣ�sL Prior uniforme in Σ

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

) .
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n

First derivatives:

∂ϕ

∂µ
=

µ− x

σ/n

∂ϕ

∂σ
=

n

σ
− n s2

σ3
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n

First derivatives:

∂ϕ

∂µ
=

µ− x

σ/n

∂ϕ

∂σ
=

n

σ
− n s2

σ3

From which it follows (equating the derivatives to zero)

E(µ) = x

E(σ) = s

(They are indeed the modes!)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)
∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)
∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)
∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit. And, notice, ρ(µ, σ) = 0 .
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)
∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit. And, notice, ρ(µ, σ) = 0 .
Q.: Are they independent?
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?

On the other way around, for a fixed τ ,

f (µ | x , τ) ∝ exp
[

−n τ

2
(µ− x)2

]

· f0(µ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?

On the other way around, for a fixed τ ,

f (µ | x , τ) ∝ exp
[

−n τ

2
(µ− x)2

]

· f0(µ)

⇒ Gibbs sampling
© GdA, PhLab-06 18/05/21 57/58



Practical introduction to BUGS

◮ Introducing the bug language to build up the models.

◮ Running the model (including data and ‘inits’) in the
OpenBUGS GUI.

◮ Analysing the resulting chain in R.
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