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Abstract
This note is just to point out, if needed, that uncertainty about models and
their parameters has little to do with a ‘paradox’. The proposed ‘solution’ is
to formulate practical questions instead of seeking refuge into abstract prin-
ciples. (And, in order to be concrete, some details on how to calculate the
probability density functions of the chord lengths are provided, together with
some comments on simulations.)

“ On trace au hasard une corde dans un cercle.
Quelle est la probabilité pour qu’elle soit plus petite
que le coté du triangle équilatéral inscrit?

Entre ces trois réponses, quelle est la véritable?
Aucune des trois n’est fausse, aucune n’est exacte,
la question est mal posée.”

(Joseph Bertrand)

“ Probability is either referred to real cases
or it is nothing”
(Bruno de Finetti)

“As far as the laws of mathematics refer to reality,
they are not certain,

and as far as they are certain,

they do not refer to reality.”

(Albert Einstein)

*Note based on lectures to PhD students in Rome. More on the subject, including the Android
app mentioned in the text, at http://www.romal.infn.it/~ dagos/Bertrand.html.



1 Introduction

The question asked by Joseph Bertrand in his 1889 book Calcul des probabilités [1] is
about the probability that a chord drawn ‘at random’ is smaller that the side of the
equilateral triangle inscribed in the same circle (see e.g. [2]). Obviously the question
can be restated asking about the probability that the chord will be larger or smaller
than the radius, or whatever segment you like, upper to the diameter (for which the
solution is trivially 100%). The reason of the original choice of the side of such a
triangle is that the calculation is particularly easy, under the hypotheses Bertrand
originally considered, as we shall.

The question can be restated in more general terms, i.e. that of finding the
probability distribution of length [ of a chord. Indeed, as well known, our uncertainty
about the value a continuous variable can assume can be described by a probability
density function, hereafter ‘pdf’, f(l), which should be written, more precisely, as
f(l|I4(t)), where I is the Information available to the subject s at the time t. In fact,

“Since the knowledge may be different with different persons or with the
same person at different times, they may anticipate the same event with
more or less confidence, and thus different numerical probabilities may be
attached to the same event.” [3]

And, hence, probability is always conditional probability, as again well stated by
Schrodinger [3],

“Thus whenever we speak loosely of ‘the probability of an event,’ it is
always to be understood: probability with regard to a certain given state
of knowledge.”

These quotes, which are 100% in tune with common sense, definitely rule out to use
the appellative of ‘paradox’ for the problem of the chords. In other words, Bertrand’s
‘paradox’ belongs to a completely different class than e.g. Bertrand Russell’s barber
paradozr. Absurd is instead the positions of those who maintain that the problem
should have a unique solution once it is “well posed™[4] or that they have found the
“conclusive answer” [5].

In my point of view the question proposed by Bertrand can be only answered if
framed in a given contest and ‘asked’ somehow, either to human beings, or — and
hence the quote marks — to Nature by performing suitable experiments (but making
a particular simulation, of the kind of that proposed in Ref. [5], is the same as asking
human beings — and even making an experiment the result will depend on the set

up!).



For example we can ask suddenly students, without any apparent reason (for
them), to draw a chord in a circle printed on a sheet of paper. And to give more sense
(and fun) to the ‘experiment’ we can make a bet among us on the resulting length,
in units of the radius of the circle (the bet could be even more detailed, concerning
for example the orientation of the chord — it never happened to me that a student
drawn a vertical one, but perhaps Japanese students might have higher tendency to
draw segments top down!). Or we can ask students to write, with the their preferred
programming language and plotting package, a ‘random chord generator’. In this
case our bet will be about the length that will result from a certain extraction, e.g.
the first, or the 100th (if we were not informed about all or some of the previous 99
results, because this information might change our odds about the outcome of the
following ones).

Indeed I have done experiments of these kinds since many years, and I have
formed my opinion on how students react, depending on the class they attend and
how they are skilled in mathematics, and .. .even in games (yes! in the answer there
is even a flavor of game theory, because smart students unavoidable try to guess the
reason of the question and try to surprise you!) For example unsophisticated students
draw ‘typical’ chords, of the kind you can get searching for the keywords “chord
geometry” in Google Images.! Hence, for example, a real ‘well posed’ question could
be the following: “what is the length of the chord (in units of the radius) that will
appear in e.g. the 27-th (from left to right, top to bottom) image returned by search
engine?” When instead I propose the the question to students of advanced years I
have quite some expectation that one or more of them will draw a diameter (just a
maximum chord) or even a tiny one almost tangent to the circumference.

Essentially this is all what I have to say about this so called ‘paradox’. The rest
of the note has been written for didactic purposes, in order to show how to evaluate
the probability distributions of interest and how to make the simulations.

2 Four ‘basic’ solutions

Let us now start going through the ‘classical’ solutions of the problem, i.e. those
analyzed by Bertrand and which typically appear in the literature and on the web,
plus a forth one which is even (somehow) simpler than the other three.

thttps://wuw. google.it/search?q=chord+geometry&source=lnms&tbm=isch
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Figure 1: Left: circle with inscribed equilateral triangle and chords with one end in A and the
other distributed uniformly around the circumference. Right: geometric construction to show
how to evaluate the length [ from 6s, with 0 < 07 (see text for details).

2.1 Endpoints uniformly chosen on the circumference

A way to draw ‘at random’ a chord is to choose two points on the circumference and
to join them with a segment. If we indicate the first point with A, corresponding to
a vertex of the equilateral triangle, as shown in Fig. 1, the chords smaller that the
side of the triangle are those with the other end is either in the arc between A and
B or in that between A and C'. The resulting probability is thus simply 2/3.

A more complete information about our beliefs that the length falls in any given
interval is provided by the pdf f(I | M), where M; stands for 'Model 1’. Since there
is a correspondence between a point on the circle and the angle between the radius
to that point and the z-axis (according to usual trigonometry convention), we can
turn our condition into two angles, 6; and 6,, uniformly distributed between 0 and
2. If we are only interested in the length of the chords and not in their position
inside the circle we can fix 6; at m and consider 5 in the interval between 0 and 7.
The corresponding chord will have a length of (see right plot in Fig. 1)

I = (R+ Rcosf)? + R?sin’6,
- R \/(1 + cos 63)2 4 sin? 6,

= Ry\/2+4+2cosb,, (1)




or, more conveniently, the normalized length \ will be

l
)\:E = /24 2cosb;. (2)

The problem is thus how to calculate the pdf? f(A| M) from

M) = = (0<h<m). )
We shall use the general rule?
W) = [ 8- ) S dr, 0

2Obviously, the pdf’s f(f2 | M1) and f(A| M;) are usually expressed by different mathematical
functions, a point very clear among physicists. Mathematics oriented guys like to clarify it, thus
writing e.g. fa(A| Mi), fo, (02| M;i), and so on. I will add a proper subscript only if it is not clear
from the context what is what.

3An alternative way is to use the ‘text book’ transformation rule, valid for a monotonic function
y = g(z) that relates the generic variable X to the variable Y

W) = Fxla'w) \diyg-l(y)\ , (4)

which can be derived in the following way for the general variables X and Y [capital letters indicates
the variable, small letters the possible values — now it becomes important to make clear the different
pdf’s and we shall then use the notation fx() and fy()]:

g'(z) > 0] If g() is non-decreasing in the range of X we have

Fy(y) = P(Y <y)=P(g(X) <y)=P(X < g7 '(y) = Fx(¢9~'(v))-
Making use of the rules of calculus we have then

d d

fy(y) = @ Fy(y) = d—y Fx(g7'(y) = fx((g7 " (»))

d

"y 9 ' (v)

g'(z) < 0] If, instead, g() is non-increasing we have

Fy(y) =P(Y <y)=Pg(X)<y)=P(X>2g '(y)=1-Fx(g " (¥),
and then
fy(y) = d% Fy(y) = —d% Fx(g~'(y) = —fx((g‘l(y))-d% 9 (W) = fx (g (v))- [—d% g‘l(y)]

where the factorization in the last step is due to the fact that fx() cannot be negative, and
for this reason the absolute value in (A) is only on the second factor.

Equation (A) takes then into account the two possibilities and, let us stress once more, it is valid
for monotonic transformations. We shall use it, to double check our results in footnotes 5, 6 and 7.



in which Y is related to the X by Y = ¢g(X), with g() a generic function and ¢() the
Dirac delta. In our case we have then

FOIM,) = /0”5 <)\—\/2+200892> f(0| M) dbs, (5)

Eq. (5) has the very simple interpretation of ‘summing up’ all elements ‘ f (65 | M) df5’
that contribute to the ‘same value’ of A (the quote marks are due to the fact that we
are dealing with continuous quantities and hence we have use the rules of calculus).
This interpretation is very useful to estimate f(A | M;j) by simulation: extract ‘many’
values of 6, according to f(fy| M;); for each value of 6 calculate the corresponding
A; summarize the result by suitable statistical indicators and visualize it with an
histogram.

Making use of the properties of the Dirac delta and taking into account that \(6s)
decreases monotonically we get

FO M) = /0”5 ()\—\/2+200s92)-%d92 (6)

“In the step from Eq. (6) to Eq. (7) we are making use of the famous property (at least among
physicists) of the Dirac delta

So() = Z%

%

where z; are the real roots of g(z). In our case we have a single root, which we write as *, and
hence we get

§(z —x*)
g’ (z*)]

If we apply it to the general transformation rule (4) we obtain

o(g(x)) =

Iy (y)

/ T - g(@) - fxla)de
— /Oo oz —=") fx (@) dz

oo |9'(z")]
1 *
e

in which we recognize Eq. (A) of footnote 3, if we note that fx(z*) is fx (¢~ '(y)) and the derivative
of g(z) w.r.t. x calculated in a* is the inverse of the derivative of the inverse function g=! (w.r.t.
y!) calculated in y = g(a*) [for the latter observation just think at the Leibniz notation dy/dx =
1/(dw/dy)).

Anyway, in order to avoid confusion the denominator in Eq. (7) has been written in the most
unambiguous way.



_ /” 6(0 — 03) ~ld92, (7)
0 (%(A—\/2+260862))‘6 Q

where 65 is the solution of the equation

A—14/242coshy; = 0, (8)

—p*
2—62

that is

>\2
05 = arccos <7 — 1) . 9)

Being the derivative in Eq. (7)

sin 92

62—03 V2 + 2 cos by 62—03

= 1- @)2 (11)
1

FAIM) = 1D (<A<, (12)

J1— (0/2)2

from which we can also calculate the cumulative function

the pdf of interest is®

F(A\Ml)EAAf(A’\Ml)dA/ - %~arcsin @) (13)

both shown in Fig. 2.

5As an exercise, we can check the result with that obtainable using the ‘text book’ transformation
rule described in footnote 3. In our case, using the general symbol g() introduced there, we have
A =g(02) = vV2+2cosf; and 0 = g~ (X) = arccos (A?/2 — 1). Applying Eq. (A) of footnote 3 we
have

AO) = Joula™ ) |07 OV
= %.‘di)\arccos()?ﬁ—l))‘
- 1| A
T | 1= 2-1)2]]

also yielding Eq. (12). (The minus sign resulting from the derivation is because A decreases as 6o
increases, as clear from Fig 1.)
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Figure 2: Probability distribution of A = [/R of the chords generated with Method 1. The
dashed vertical line indicates A\ = /3.



We can finally check the probability of interest, and also calculate the probability
of a chord to be smaller than the radius of the circle:

PA<V3|IMy) =F(V3| M) =

N 3
)
=
o
wn
“,
=

N

.

N}
w
N—————
Il
3o

PO<1| M) =F(1|M,) =

Simulations of chords with this methods are reported in the top left plot of Figures
4-7. Figure 4 shows a sample of random chords. Figure 6 shows the position of the
center of the chords and, finally, Fig. 5 is the histogram of the normalized lengths.
Figure 7 plot shows, as an extra curiosity, the distribution of the distance of the
chords from the center of the circle.

C

R /2

B

Figure 3: Construction of a chord orthogonal to a radius and distant r from the center of the
circle.

2.2 Chords orthogonal to a radius, with center uniformly
distributed along it
The second ‘classical’ algorithm consists in choosing chords orthogonal to a radius

with its center uniformly distributed along it. As we easily see from Fig. 3, the
condition for a chord to be smaller than the side of the triangle (Ir) is that its
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Figure 4: Samples of chords generated the 4 ‘basic’ methods.
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distance from the center of the circle, indicated by r in the figure, is above R/2.
That is

PU<lp|Ms) = P(r>R/2| M) = % (14)

Let us repeat the exercise of evaluating the probability distribution of the lengths
of the chords obtained with this method. Using p to indicate r/R, in analogy to

A = I/R, we have (see figure)
A= 212, (15)
with
flpIMz) =1 (0<p<1). (16)

Then, the pdf of interest will be given by

FO M) = /015 (A—Qy/l—p2>-1dp (17)

g0 2=

1
20*/ 1 — p*2
P o= 1 (A/2)2. (20)

The pdf and the cumulative distribution of interest are then®

FOIMy) = — -2 (0<A<2) (21)

41— (A/2)2
FOMMs) = 1—/1— (\/2)2, (22)

6Let us repeat the exercise of using Eq. (A) of footnote 3 also in this case, starting now from
A=2y1-p*=g(p), p=/1-(A/2)2 =g~ () and fp(p) =1:

d
dX

p=p*

with

fr(g™' (V)
A

4,/1=(\/2)2°

fa(X) 1—(A/2)?

that is precisely Eq. (21).

14
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plotted in Fig. 8 and from which we can calculate the probabilities of interest:

F(VBIMs) = o (23)
F(1IMy) = 1-+3/2~13.4%. (24)
C
A T
B

Figure 9: As Fig. 3, but with the annulus of infinitesimal width dr drawn at r to show that in
Model 3 the infinitesimal probability dP that the distance of a chord from the center is between
r and r+dr is given by dP = dF (r) = 2nrdr/(mR?) = (2r/R?) dr, and hence dF(p) = 2pdp,
or, in our notation, f(p|Ms) = 2p, with p =1r/R.

2.3 Center of chords uniformly chosen inside the circle, with
chords orthogonal to radius

The third method is a variant of the second, in which the center of the chord, instead
of being generated uniformly along a radius, are generated uniformly inside the circle.
The centers of the chords fall inside the circle of radius R/2 with probability 1/4,
and than (see again Fig. 3)

3

PU<lr| Ms) — P(r2§|M3):Z. (25)

Let us repeat once more the exercise of calculating the probability distribution of \.
The difference with respect to the previous case is that now the pdf of the center of
the chords is proportional to r, since dP o (27r)dr (see Fig. 9). The pdf of p is then,
after proper normalization,

fpIMs) = 20 (0<p<1). (26)

16



and the equivalent of Eqgs. (17)-(18) and sequel are now

My =[5 (A=2/1=12) 20dp 1)
(@O —2vT= )

2
2p*/ /1_p*2

with the same p* of Eq. (20), thus leading to’

p=p*

V1-—p* (29)

A

FAIMa) = \1-(1- (/2 =7 (30)
The result can be then summarized as
FOMs) = % (0<A<2) (31)
)\2
FM[Ms) = -, (32)
from which we obtain
3
F(WV3 M) = 1 (33)
1
FLIMy) = . (34)

"Let us repeat once more the exercise done in footnotes 5 and 6, since in this case the starting
pdf is not a constant, being fp(p) = 2p. All the rest is like in footnote 6. Here it is:

Frlg™ ()| 5 VT /27

A A
2m'47m25-

fa(d)

17
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B

Figure 11: A way to draw chords with lengths uniformly distribute between 0 and 2R.

2.4 Chords with length uniformly distributed between 0 and
2R

It is curious that the method of simply taking chords with length uniformly dis-
tributed up to the length of the diameter is usually not taken into account, although
the idea is not bizarre at all. Indeed this could even be the natural procedure to
someone used to operate in classical geometry with ruler and compass: place one end
of the compass in a point of the circumference (e.g. A in Fig. 11); then place the
other end along the diameter impinging the circumference in A; finally rotate the
compass in either direction (anticlockwise in the figure) and find the second end of
the chord.

The pdf of A as well as the probabilities of interests are in this case really trivial:

FAIMY) = 5 (0<A<2) (35)
FO M) = 2 (36)
FVEIM) = 2 @7
FOM,) = % (38)

Nevertheless, although the results from this extraction model are very easy, if we

19



Ml MQ Mg M4
NS S D N
f m/1-()/2)2 44/1-()/2)2 A2 1/2
F(\) % - arcsin% 1 —1—=(\/2)2 A2 /4 A/2
E(\) 4/m = 1.27 7/2~ 1.57 4/3~1.33 1
a(\) V2 —16/72~0.62 /8/3—n2/4~ 045 V2/3~047 1/v/3~0.58
P\ <V3) 2/3 ~ 0.67 1/2=10.5 3/4=0.75 +/3/2~0.87
P(A<1) 1/3~0.33 1-+3/2~013 1/4=035 1/2=05

Table 1: Summary of the four basic chord generators.

ask someone to make a computer program to draw cords ‘at random’, I would not
bet 8.7 to 1.3 (that is ~ v/3/2 to 1 — v/3/2) that a chord will be smaller than the
side of the triangle! This will be the subject of section 4.

The results of the four basic methods are summarized in Tab. 1 and in Fig. 12.
More details, obtained by simulations, are shown in Figs. 4-7.

3 A chord length generator (and its implementa-
tion in R)

In reality, if we are just interested in making a programs with generates the length of
the chords ‘at random’, using one of the four methods we have seen, there is no need
to go through all the steps of the operational descriptions of the algorithms. We can
just use the probability distributions, summarized in table 1. In order to do that we
need a premise, highlighted in the following subsection.

3.1 A curious transformation and its practical importance

Imagine to have a generic continuous variable X whose uncertainty is described by
the pdf fx(z) and the cumulative distribution Fy(x) (in this subsection we shall

20
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use the more precise notation introduced in footnote 3). We might think at a new
variable Y, related to X by Y = Fx(X), that is

y = g(x) = Fx(), (39)

written a a way to stress that in this case Fx() plays now the role of the generic
mathematical function g(), independently of its probabilistic meaning.
Making use of Eq. 4 we have

+o0o
) = [ 8y Fx(@) fx(@)do. (40)
Being F'x() monotonic and not-decreasing with derivative equal to f.(), we have then
_ [ted(z —at) _ Ix(@)
frly) = /_OO W'fX(x) dr = Fx(a®) =1. (41)

This is a great result, that we double check following the same reasoning used in
footnote 3:

Fy(y) = P(Y <y) = P(Y < Fx(2)) = P(X < Fx'(y) = Fx (Fx'(v)) = v

=4 B = =1
Independently of the pdf fx(), the variable Y defined in this way is uniformly dis-
tributed between 0 and 1. It follows that the pdf of a variable defined as X = F'(Y)
will be f.(x).

This observation suggests a simple algorithm, very useful in those cases in which
the cumulative function is easy to invert, to make a (pseudo) random number gen-
erator to produce numbers such that our confidence on the occurrence of X = x is
proportional to f(x):

v o= Fx'(u), (42)

where u stands for the occurrence of a uniform (pseudo) random generator that gives
numbers (apparently) ‘at random’ between 0 and 1 (random number generators of
this kind are available in all computational environments.)

3.2 Application to the chord problem

Fortunately we can apply this trick to all probability distributions of the chords found
in the previous sections. The generic rule (42) gets then implemented as follows.

22



My A= 2sin (mu/2).
My A= 22u—u?.
Ms: A =2/u.
My A=2u.
And this is then, for example, the resulting function written in the R language [6]:

rlchords <- function(n, meth) {
u <- runif(n)
switch(meth,
2xsin(pi*u/2),
2xsqrt (2*u-u~2),
2xsqrt (u) ,
2%u)
}

Issuing then the following instruction from an R console (*>’ stands for the prompt)
you can finally get an histogram similar to the left top one of Fig. 5:

> lambda=rlchords(100000,1); hist(lambda, nc=200, col=’red’)

Or you can evaluate mean, standard deviation and fraction of occurrences with A
smaller than v/3:

> mean(lambda)

> sd(lambda)

> length(lambda[lambda<sqrt(3)])/length(lambda)

23



4 What should one expect from a computer draw-
ing program?

“Mater artium necessitas”
(“Necessity is the mother of invention”)

The original Bertrand problem is about drawing chords and not just telling
numbers between 0 and 2 (taking a unitary radius). Therefore the question we have
to ask is really to draw the chord, by hand of by a computer program.® In the
introduction I have told what I more or less expect when I ask the practical question,
providing a sheet of paper with a pre-designed circle, and I must say that in the last
years I had no surprises that induced me to change the model I formed in my mind.
You may form yours with practice.

More recently I have also asked PhD students to write “chords generators” with
their preferred computer language. As it easy to guess, the choice goes to the al-
gorithm easier to implement, which for physics students is Method 1, since they
are familiar with circular motion and with transformations from polar to Cartesian
coordinates.

The other methods are somehow tedious because, if taken literally, they require
several steps with formulae not used everyday, that one needs to derive. For example
Method 2, requires literally: 1) to choose a radius at random; 2) to chose a point on
the radius; 3) find the equation of the line orthogonal to the radius in that point;
4) find the interceptions of the line with the line with the circle. And — I must
confess, with some shame — that the first time I was playing with the problem, I
was implementing in R these detailed procedures. When during this year course
I tried to make an Android app to draw ‘random’ chords on a circle, using App
Inventor [7], I was horrified by the formulae I had to ‘write’ with that tool. So I
initially implemented only Method 1. After a while I also implemented Method 2,
but not following the procedures described above. The trick was to extract a point
along the horizontal diameter, thus coinciding with the abscissa and operate then a
random rotation. I that way I was able reuse somehow the ‘blocks’ (the graphical
programming elements shown e.g. in Fig. 13) developed for Method 1.

The rest of this section is devoted to simulation issues, showing how to avoid
pedantic procedures and without pretending that the suggested algorithms are the
‘best” in some sense that should be better defined.

8Nevertheless, the lengths provided by the ‘chord generator’ presented in the previous section
do provide valid answers, since the pdf’s have been derived using some geometric rules to produce
chords and not with an abstract algorithm to produce numbers between 0 and 2, like those you
would get e.g. with the following R command
> n=10; lambda = 2*sin(runif(n, 0, pi))~2
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4.1 Model 1 (M)

As stated above, this is the one that appears the simplest (to implement in a program)
to physics students, to most colleagues and to myself. Here is how it appears in R (n
is the number of chords).

> phl <- runif(n, 0, 2*pi)

> ph2 <- runif(n, 0, 2*pi)

> pl <- cbind(cos(phl), sin(phl))

> p2 <- cbind(cos(ph2), sin(ph2)

> 1 <= sqrt( (p2[,11-p1[,11)" 2 + (p2[,2]1-p1[,2]1)" 2)

The result is a ‘vector’ of n lengths 1 (in units of the radius). Plus we have the
matrices of interception points (each raw is a point).

4.2 Model 2 (Ms)

In this case we start extracting x between —1 and 1, evaluating the corresponding
ordinates.

> pl <- p2 <- runif(n, -1, 1)

> pl <- cbind(pl, sqrt(1-pl~2))

> p2 <- cbind(p2, -sqrt(1-p2~2))

Then we define a random rotation angle and add it to the polar angles calculated
from the points:

> phr <- runif(n, 0, pi)

> phl <- phr + atan2(p1[,2],p1[,1]1)

> ph2 <- phr + atan2(p2[,2],p2[,1])

At this point we have reuse exactly the last three lines of code of the previous method.
The resulting App Inventor blocks are shown in Fig. 13.

4.3 Model 3 (Ms3)

To chose a point uniformly inside the circle we could extract uniformly z and y
between —1 and 1 and discard the points which are outside the circle of radius 1.
But we can use of the previous code (or App Inventor blocks) if we extract a point
along the radius with pdf f(p) = 2p, as we have learned in subsection 2.3, making
use of the technique learned in subsection 3.1.

> rho <- sqrt(runif(n))

But, to reuse the previous code, we have to invert at random (with probability 1/2)
the sign of this numbers. Technically this cab be done in R creating a vector of
random —1 and 1 obtained by a binomial generator and multiplying element by
element. Thus our starting abscissas will be
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Figure 13: App Inventor blocks for the core of Method 2 (see text).
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kad get GEB | * | ERIECIGEED | random fraction

random fraction (8.5

Figure 14: App Inventor blocks to turn Method 2 into Method 3 (see text).

> pl <= p2 <- rho * ( rbinom(n, 1, 0.5)*2 - 1 )
After this, we continue exactly as in the second line of R code of the previous method.
The implementation of this variation in App Inventor is shown in Fig. 14.

4.4 Model 4 (M4)

Also in the case of the fourth method, we can reuse the code written for Method 2,
without having to calculate the intersections of two circles. With the help of Fig. 15
we can recognize a useful rectangular triangle and then make use of a famous theorem
of elementary geometry. The projection p is then [?/2R and then the abscissa of the
intersection is equal to z = p — R. Here is how to recover, once more, the code of
Method 1 (remember that we use unitary radius):

> pl <- p2 <- runif(n, 0, 1)°2 - 1

and all the rest we be the same.
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Figure 15: A sketch which show how to calculate the abscissa of the the interception (x) by
simple geometry (see text).

5 A physical model: throwing mikado sticks on a
pattern of circles

The authors of Ref. [5] claim to have found a ‘conclusive physical solution’ to the
Bertrand problem, but I have strong doubts that they have ever tried to implement
their model in a real experiment. Something which seems to me more realistic is the
kind of game sketched in Fig. 16: a pattern of circles® on a table, or on the floor,
on which we throw mikado sticks, or toothpicks, needles or something similar. The
only, obvious, conditions is on the minimum length of the sticks, that has to be at
least the double of the maximum diameter of the circles.!®

If we throw ‘ad random’ the sticks, somehow towards the center of the pattern
in order to avoid complications with boundary conditions, we expect their centers
and their orientations ‘uniformly’ distributed (the former in the plane, the latter
in angle w.r.t. a given direction). We consider only sticks whose reference point,
marked somehow, is inside one circle and consider the resulting chords defined by the

9In Fig. 16 all circles have the same size, but this is not a necessary requirement, as it will be
clear in a while.

10Also this condition is not necessary, if we think to prolong the stick in either end by a ruler
to draw the chords. And, finally, it is not even required that the reference point, needed to decide
inside which circle the chord has to be drawn, has to coincide with the center of the stick. The
formulation in the text is, or at least so seems to me, the easiest to be implemented in a real ‘game’,
similar to the famous “Buffon’s needle”.
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Figure 16: Above: Mikado sticks thrown at random on a pattern of circles. Below: Sketch of
the mikado experiment to show how to evaluate the distance of the chord from the center from
the position of the center of the stick and its orientation (see text).
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intersection of the stick with the circumference of that circle. As we can see from
the figure, the efficiency is rather high (and, as a byproduct, we can try to estimate
empirically the area of the regions between circles, but this is another story...).

Evaluating the pdf of the expected chords length might be complicated, but for-
tunately we can make use of some of our previous results. Let us indicate now with
ro the distance from the center of the stick to the center of the circle and with »
the distance of the chord from the center of the circle (see Fig. 16). The respective
quantities in units of R are then py = r9/R and p =r/R.

By the hypothesis inherent to the throwing mechanism the center of the stick
is uniformly distributed in the circle. This implies, as we already know, that high
values of pg are more probable than small ones, namely f(po| Ms) = 2po. The
fractional distance r is related to 7o by r = r¢sin «, where the angle «, defined in the
construction in Fig. 16, is uniformly distributed between 0 and 7/2. These are then
our starting conditions !

p = posina (43)

flpo| Ms) = 2po (0<po<1) (44)
1 2 us

flafMs) = 2w (Oﬁaﬁg)- (45)

We can then calculate the probability distribution of p and make then use of the
reasoning applied in Method 3 to evaluate the probability distribution of A. Indeed,
for a given pg, the pdf of p, conditioned by the value of pg, will be given by

w/2
F(p| Ms, py) = /0 5(p— po sina) - f(a) da (46)
= /pr-gda, (47)
0 po cosa* T

with o = arcsin(p/pp), from which it follows

2

™ poy/ 1 — (p/po)?

1 An alternative way would be to use the angle 3 defined in Fig. 16, ranging between 0 to 7, with
f(B|Ms) =1/m. The angle « inside the rectangular triangle will be equal to § if 8 is smaller than
/2, and m — 3 elsewhere. The relation (43) would then be replaced by p = po sin 5 and the integral
(46) replaced on the equivalent one in df between 0 and 7, with the factor 2/7 in the integrand
replaced by 1/7, apparently leading to results differing by a factor of 2. This apparent contradiction
is resolved noted that transformation rule of the Dirac delta has now two roots, 57 = arcsin(p/po)
and 85 = m — arcsin(p/po). But, since | cos 85| = | cos 55|, we have two identical contributions, thus
exactly compensating the missing factor 2.

fpIMs, po) = (48)
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= (49)
T\ 5 — P
Having f(p| Ms, po) and f(po | M5) we can then evaluate f(p| Ms) as
1
Flol Ms) = [ (o M, p0) - F oo | Ms) dpo, (50)
in which we have to pay attention to the condition p < py. The result is
M 1 2 d
= [ —Z .2 51
.f(p| 5) /p ﬂ_m Po aPo ( )

1 4
/ —Ldp, (52)
p
4

T\ g — P
= %\/1—p2.

Having calculated the pdf of the distances of the chords from the center of the circle,
we continue as in Eq. (27), thus obtaining

(53)

f0IMy) =[5 (h-2/1=2) 2T (54)
ot dlp—p) 4

_ Mmylept 2107 (56)
2/ L—p? T

with the usual p* = /1 — (A/2)%2. We get finally

2 (Ve
vy = 2O (57
FOMs) = %arcsin(x/z)—%m—(x/z)z, (58)

shown in Fig. 17 and from which we can calculate the usual indicators

1
B\ Ms) — %m.m (59)

2
oM Ms) = /3 % ~ 0.34 (60)
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Figure 17: Probability distribution of A = [/R of the chords generated with Method 5
(‘mikado’). The dashed vertical line indicates A = /3.

32



PA<V3IM;) = %—2—@%0.39 (61)
PO< 1| M) = %—2—\/iz0058. (62)

The other details obtained by simulation, reported in Figs. 4-7, for the four ‘basic’
methods are shown in Fig. 18.

6 Conclusions

The only sound experiment I could think about (but perhaps I miss of fantasy) leads
to a solution different than the claimed ‘final’ solutions of the problem.[4, 5]
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Figure 18: Results from simulations based on the ‘mikado model’, or Model 5.
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